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PART I. APPLICATION OF 1,10-PHENANTHROLINE TO THE 

SPECTROPHOTOFLUOROMETRIC ANALYSIS OF ZINC AND CADMIUM 
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INTRODUCTION AND PURPOSE 

For many years the fluorometer has been one of the major 

tools of the clinical chemist (1). The simple, inexpensive, 

filter fluorometer has been a major factor in bringing very 

sensitive analytical methods to laboratories to which sensi­

tivity, simplicity and expense are major considerations. 

The advent of highly sophisticated research spectrophoto-

fluorimeters which can record both absolute excitation and 

emission spectra of fluorescent species directly, has brought 

the level of instrumentation available for spectrophotofluorom-

etry up to a par with that commonly used in spectrophotometry. 

These instruments have both simplified and promoted interest 

in the study of fundamental physical and chemical processes in­

volved in fluorescence. Several excellent books on the subject 

are available including those of Hercules (2), Becker (3), and 

Pringsheim (4). 

Most analytical chemists are probably familiar with the 

important colorimetric reagent 1,10-phenanthroline and its more 

important relatives such as 4,7-diphenyl-l,10-phenanthroline 

(bathophenanthroline). The large molar absorptivities and 

complex-forming powers of these ligands make them of extensive 

use analytically in the spectrophotometric analysis of metals. 

It is not generally as well known that all of these compounds 

also fluoresce in aqueous solution. 

Analytical methods which measure absorption of light are 
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useful generally only to about 0.1 ppm. Fluorcmetric methods 

can give useful analytical results at levels as low as 0.01 

ppb. Fluorescence methods are inherently more sensitive than 

absorption methods because the signal resulting from the 

fluorescence can be amplified directly, while with absorption 

methods the difference or ratio of two signals must be ampli­

fied. 

Besides the greater sensitivity inherent in the fluoro-

metric technique, fluorescence methods may offer greater selec­

tivity than absorption methods. In absorption spectroscopy 

only the frequency of incident light may be varied to obtain 

selectivity in a prepared sample. In fluorescence methods 

either the excitation or emission wavelength may be varied. 

However, the advantages of fluorometric techniques must be 

paid for by the greater environmental effects in fluorescence 

and by the greater problems of impurities in reagents. 

Jones (5) pointed out that 1,10-phenanthroline was poten­

tially an extremely sensitive fluorometric reagent for the 

determination of metal ions. Initial studies confirmed that 

zinc and cadmium form highly fluorescent 1,10-phenanthroline 

chelates in aqueous solution. The purpose of this work was to 

investigate the application of the complexes of zinc and cad­

mium with 1,10-phenanthroline [and similar nitrogen hetero-

cycles) to the spectrophotofluorometric analysis of these 

metals. 
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LITERATURE SURVEY 

History 

In the discussion which follows, the abbreviation "phen" 

will be used in place of the name "1,10-phenanthroline", and 

"bipy" will represent 2,2'-bipyridine. 

Phen is one of the most commonly used organic reagents in 

analytical chemistry. Its importance is demonstrated by the 

fact that almost every textbook of quantitative analysis makes 

some mention of it either as a colorimetric reagent for iron 

or as an oxidation-reduction indicator. 

The discovery of phen and the first investigation of its 

properties can be traced to the work of Fritz Blau (6,7) in the 

years between 1888 and 1898. During this time Blau first pre­

pared phen and bipy and he prepared and characterized their 

iron(II) and (III) complexes. He also noted the reversibility 

of the oxidation of the iron(II) complex and he synthesized 

nickel(II), cobalt(II) and copper(II) complex salts of phen 

and bipy. 

In 1889 Gerdeissen (8) also reported the synthesis of 2-

methyl-phen, although he did not notice any reaction with iron. 

Analytical applications of these compounds were not imme­

diately forthcoming. As Brandt e^ have pointed out, the 

resolution of tris-bipy iron(II) into its optically active 

forms by Werner in 1912 was probably the last important work 

on these compounds for almost 20 years (9). 
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The analytical possibilities of these compounds were ini­

tially exploited in the early 1930's. In 1931, Maiden, Hammett 

and Chapman demonstrated that the iron(II) complexes could be 

used as reversible, high-potential redox indicators (10). The 

first direct application of compounds of this type to quanti­

tative analysis was performed by Bode (11), who used bipy to 

determine iron in beer following digestion with sulfuric acid 

and hydrogen peroxide. The use of phen instead of bipy for 

the colorimetric determination of iron was begun in 1938 by 

several workers almost simultaneously. 

Much of the work in exploiting these reagents for analyt­

ical uses was done by G. Frederick Smith and Francis Case in 

the 1940's and 1950's and has been described by Diehl and Smith 

(12). Smith and Case studied the effects of substitutents in 

the bipy and phen molecules on the absorption spectra of metal 

chelates and on the reduction potential of the iron couple. 

Smith and Case studied about 150 compounds which were closely 

related to bipy and phen. They produced a series of redox in­

dicators in the range of 0.87 to 1.33 volts and several colori­

metric reagents of extraordinary sensitivity and selectivity. 

Phen and its relatives gained attention initially in 

analytical chemistry on the basis of their reactions with metal 

ions to form colored complexes. Although the ligands are used 

for a variety of other purposes, this discussion will be con­

fined to those uses involving metal complexes. 

Phen forms metal chelates with almost all metal ions under 

some conditions. Conditions of preparation will not be given 
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since they have been outlined elsewhere (13). In most cases 

the phen molecule reacts with the metal ion to give the mono, 

bis, and tris complexes. It has also besn shown to give poly-

(phen)hydrogen(I) species in aqueous solution (14). 

Among the most common colorimetric applications of phen 

type compounds are those in the determination of iron, copper, 

ruthenium, cobalt, nickel, palladium, and silver. 

Nitrogen Heterocyclic Compounds as Fluorometric Reagents 

The formation of a metal chelate compound is usually 

necessary if a metal ion is to be determined fluorometrically, 

since most metal ions and metal complexes with monodentate 

ligands are nonfluorescent. In many cases it may be possible 

to use the quenching of fluorescence of a fluorescing species 

to quantitate a metal ion or other species in solution. 

Several factors combine to influence the amount of fluo­

rescence obtained from a metal chelate. The presence of a 

paramagnetic species (e.g. the metal ion) often reduces or com­

pletely quenches fluorescence by facilitating intersystem 

crossing from the singlet to the triplet state. The extent of 

intersystem crossing is also increased by the presence of 

heavier metal ions. Heavier atoms increase spin-orbit coupling 

and thus cause an increase in the rate of intersystem crossing. 

The fluorescence of chelates of heavier metal ions is usually 

less than that of the lighter metals. 

Collisional deactivation of the metal chelate also results 
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in a decrease in fluorescence intensity. Collisional deacti­

vation is increased by increasing solute-solvent interactions. 

This is done by introducing polar substituents onto the ligand 

or using a more polar solvent. Thus if the fluorescing species 

can be insulated from such interactions, the fluorescence in­

tensity will usually increase. 

Ligands which successfully form fluorescing metal chelates 

are usually large molecules, w th a high degree of aroiraticity 

and few polar substituents. They complex the central metal 

ion strongly, helping to prevent metal ion-solvent interactions. 

The introduction of substituents onto the ligand structure 

usually produces only minor changes in the absorption maximum 

and intensity and in the position of the emission maximum. 

However, such substituents may have a great effect upon the 

intensity of fluorescence. Structural changes created by addi­

tion of substituents may greatly influence the efficiency of 

certain energy transfer steps such as intersystem crossing and 

solvent-solute interactions. 

Although phen and its nitrogen heterocyclic relatives 

would appear to possess most.of the characteristics of good 

fluorescent chelate ligands, many aspects of their spectroscop­

ic behavior are unexplained. As Hercules (2) has stated, "the 

nature of the emission (if any) from nitrogen heterocyclic 

compounds cannot presently be predicted with certainty...This 

fact, together with the extreme sensitivity of the emission of 
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nitrogen heterocyclic compounds to solvent effects, has re­

tarded the use of fluorescence and phosphorescence for deter­

minations of these compounds." Nevertheless, many fluorescent 

complexes of these ligands have been reported. But only one 

direct fluorometric method involving measurement of the fluo­

rescence of a phen complex has been reported to date. 

Phen has been used as a chelating agent in several cases 

to shield certain lanthanides from solvent interactions lead­

ing to collisional deactivation and thus permit the observation 

of their natural fluorescence. Several reported analytical 

methods have been based on this technique (15-18). 

Wunschel and Ohnesorge (19) reported the luminescence of 

tris(bipy)iridiumCIII) and tris(phen)iridium[III) in dimethyl-

formamide and ethyl alcohol. They measured the absorption and 

emission spectra of these species and assigned absorption 

bands. They reported that relative quantum yields in dimethyl-

formamide were about an order of magnitude less than quinine 

fluorescence in 0.1 N HgSO^ and that the intensity of fluores-

+3 +3 
cence of IrCphen)^ was about twice that of Ir(bipy) . An 

osmium-phen compound has also been reported to fluoresce (20). 

Veening and Brandt (21) developed a fluorescimetric 

method for ruthenium using tris(5-methyIphen)ruthenium(II) . 

They found that -the analysis of ruthenium at the 1 ppm level 

could be accomplished with an accuracy of 2% if osmium were 

present at a concentration of less than 28 ppm. They claimed 
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the lack of the necessity of a separation of osmium and ruthen­

ium as the main advantage of their method. It was found that 

platinum and nickel do not interfere while iron(II), palladium 

(II), cerium(IV), manganese(II), permanganate, silver(I), and 

dichromate are all serious interferences. 

Veening and Brandt also compared the relative efficiencies 

of fluorescence emission of the ruthenium(II) complexes of 

several phen derivatives. They found that the greatest inten­

sity of fluorescence was observed from the 5-methyl-phen com­

plex. The ratio of fluorescence intensity of each of the other 

chelates to that of the 5-methyl derivative was measured and 

the ratios were found to be: bipy, 0.53; 4,4'-dimethyl-bipy, 

0.21, phen 0.84; 5,6-dimethyl-phen, 0.87, 3,5,6,8-tetramethyl-

phen, 0.47. 

Jones (5) reported a fluorometric method for the deter­

mination of copper. The method relies on the quantitative 

quenching of the intense fluorescence of bathocuproine (2,9-

dimethyl-4,7-diphenyl-phen) in acid solution upon formation of 

the bis(bathocuproine)copper(I) complex. The method can be 

used to determine copper(I) at the 2 ppb level. Silver(I), 

and iron(II) and (III) seriously interfere. 

Bailey, Dagnall and West (22) also developed a spectro-

fluorometric method involving phen for the determination of 

small quantities of copper. In this method the complex copper 

(phen)2RBE (where RBE is tetrachlcro(P)tetraiodo(R)fluorescein, 

also known as rose bengal extra) is extracted into chloroform. 



www.manaraa.com

10 

dissociated by the addition of ammonical acetone, and the flu­

orescence of RBE is measured at 570 nm. This procedure thus 

does not rely directly on any fluorescence of the phen chelate. 

The method is useful for copper in the range of 1-6 ppb. 

Very similar methods for cadmium(II) (23), and silver(1) 

(24) were devised by Shcherbov e;t al. Both methods employed 

an extraction of the metal(phen)2eosin complex into chloroform 

followed by addition of acetone and measurement of the eosin 

fluorescence. Results of the silver method indicated a stand­

ard deviation of 6% on samples containing 5-40x10 silver. 

Messier e^ a^. (25) first reported the fluorescence of 

+2 
the zinc (phen) species about 3 months after it had been, inde­

pendently observed in this lab. These authors studied the 

fluorescence and phosphorescence of zinc(phen)*^ at 77®K and 

noted several things. First the complexation by zinc shifts 

the fluorescence emission maximum to longer wavelengths by 

about 7 nm. Second, the intensity of fluorescence of the com­

plex is an order of magnitude greater than that of the free 

phen. Third, the magnitudes of the quantum efficiencies of the 

three chelates are in the order tris > bis > mono. Since the 

experimental conditions under which the measurements were made 

were not described, and the authors were primarily interested 

in elucidating the electronic transitions occurring, this 

report was of limited use from an analytical viewpoint. 
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DEVELOPMENT OF THE METHOD 

Principles and Instrumentation 

Fluorescence in dilute solution may be expressed in terms 

of the following equation 

Fm = K lo e c * 

where F^ is the magnitude of the fluorescence emission in arbi­

trary units; K is a constant for a particular instrument; Iq is 

the intensity of the exciting light; e is the molar extinction 

coefficient of the fluorescing compound at the wavelength of 

exciting light; <p is the quantum efficiency, i.e. the fraction 

of total photons absorbed which is reemitted as fluorescence; 

and c is the concentration of fluorescent species. 

Thus it is evident that one can increase Fjjj at constant c 

by increasing the intensity of the exciting source, by choosing 

an absorber of greater e or environmental conditions so as to 

allow greater quantum efficiency, or simply by increasing the 

electronic amplification (which is included in K). The lower 

limit of sensitivity for a fluorescent species is determined 

by the electrical noise level and residual light sources in 

the sample cell compartment such as Rayleigh or Raman scatter 

of the solvent or sample cell. 

The fluorometric process can also be viewed as providing 

a direct measurement of absorbed light rather than the in­

direct procedure of measuring the difference in intensity 

between the attenuated and reference beam, as in spectro-
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photometry. 

The fluorescence measurements in this work were performed 

on an Aminco-Bowman Spectrophotofluorometer. This instrument, 

which has been described by Hercules (2), employs a high pres­

sure xenon arc source powered by a D.C. power supply. The 

wavelengths of excitation and of emission are controlled by 

dual monochromators which may be automatically or manually 

varied. The emitted light from the sample cell is detected by 

a photomultiplier and the signal is amplified and displayed on 

a meter and on a recorder. 

Spectra Correction 

Fluorescence emission spectra recorded on most spectro-

photofluorometers are not true spectra. As a result of the 

presence of many wavelength sensitive sources such as mono­

chromators, light sources and photomultiplier tubes, the spec­

trum obtained directly from the instrument does not represent 

the true spectrum exactly. Thus, if spectra are to be com­

pared in the literature and if accurate quantum efficiencies 

are to be determined, it is necessary that the spectra pre­

sented be independent of the instrument on which they are meas­

ured. Several methods of spectral correction have been dis­

cussed in the literature (26-27}• The method of Melhuish C26) 

was used in this work. 

The correction factors necessary for spectral correction 

on this instrument were previously determined by Hensler (14). 
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His correction factors were used directly in the correction of 

the spectral data obtained in this work. 

Reagents 

The zinc stock solution was prepared by dissolution of 

Baker Analyzed Reagent (99.9%) zinc in 50 ml of concentrated 

sulfuric acid. More dilute solutions were prepared by appro­

priate dilutions with distilled water. 

The cadmium stock solution was prepared by dissolution of 

Baker Analyzed Reagent Cadmium Chloride in distilled water so 

as to produce a solution about 0.1 M in cadmium(II). The 

solution was then standardized by EDTA titration. 

Phen was obtained from Aldrich Chemical Co. and recrystal-

lized from water. 

4,7-dimethylphen, 5-phenylphen, 4,7-diphenylphen, 5-methyl-

phen, and 5,6-dimethylphen were obtained from the G. Frederick 

Smith Chemical Co. and used as received. 

The 3- and 5-sulfonic acid derivatives of phen were pre­

pared by John Richard of this laboratory. 

Since fluorescence analysis is a very sensitive trace 

method, the water sources of the laboratory were checked 

periodically for a fluorescence blank. The water used for 

fluorescence measurements was taken from three sources: 1. 

The distilled water line of the laboratory; 2. Distilled 

water taken from the laboratory line and passed through an 

Illco-Way mixed-bed ion exchange column; 3. Distilled water 
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from the laboratory line which had been placed in a plastic 

squeeze bottle. Figure 1 shows a sample of the fluorescence 

emission spectra of each of these solutions. Such day-to-day 

measurements of the blank contributed by these water sources 

indicated that the blank was highly variable. Figure 1 shows 

perhaps the highest blank for the first two distilled water 

sources recorded during this research. From the figure it can 

also be seen that plastic containers may contribute to the 

blank. The plastic squeeze bottle water whose emission spec­

trum is shown in Figure 1 had been left in the bottle for one 

week. Most of the time, however, the laboratory distilled 

water supply provided a fluorescence-free solvent. For these 

reasons the water used in this research was taken from the 

laboratory distilled water line on a "clean" day and stored in 

glass containers until used. No water was used which had been 

in contact with a plastic squeeze bottle for more than a few 

hours. 

Measurement of Zinc Chelate Fluorescence 

Ten solutions of increasing mole ratio of zinc to phen 

were prepared in the following way. 10 ml of 1.00x10' M phen 

was placed in each of 10, 100 ml volumetric flasks. Varying 

volumes of zinc stock solutions were added to the flasks to 

produce 10 solutions, with the ratio of zinc to phen ranging 

from 0.01 to 2.00. One solution had no metal. The solutions 

were diluted nearly to volume and adjusted to pH 3.1 2 0.1 

They were then diluted to the mark. 
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270 nm 

I. LABORATORY SUPPLIED 
DISTILLED WATER. 

2 LABORATORY DISTILLED WATER * 
PASSED THROUGH A FRESH 
DEIONIZATION COLUMN. 

a LABORATORY DISTILLED WATER 
FROM A PLASTIC BOTTLE. 

350 400 
X (nm) 

450 

Fig. 1. Fluorescence spectra of three laboratory water 
sources 
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Absorption and fluorescence spectra were obtained for both 

the complex and the solution containing no metal. Absorption 

spectra of aqueous phen solutions have been presented by 

Hensler (14) and will not be presented here. The position and 

intensity of the absorption bands of the metal chelate are 

essentially the same as those of the protonated form of phen. 

The fluorescence emission spectra of these solutions are shown 

in Figure 2. 

Figure 3 shows the chelate fluorescence of the zinc 

+2 
Cphen)^ species in solution of pH 7.2. This figure allows 

comparison of the chelate fluorescence with that of the free 

base phen. The solutions were prepared in a manner analogous 

to that just described. The solutions were adjusted to pH 7.2 

with NaOH solution. 

***2 From the fluorescence spectra of the zinc(phen)^ che­

lates, several things should be noted. First, the wavelength 

of maximum emission of the chelate is shifted to 372 nm from 

the 415 nm peak of the protonated ligand. 

Second, the intensity of fluorescence of the metal chelate 

is much larger than that of the protonated ligand. This has 

been attributed to the lowering in energy of the n states in 

the phen molecule such that the lowest energy transition is 

not TT*-»- n, as in the ligand, but ir* -»• tt, which is a fully 

allowed transition (14). 

Third, as the ratio of metal to ligand is increased, the 

fluorescence intensity of the complex increases to a maximum 
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Fluorescence spectra of zinc (phen) n in. acid 
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and then decreases. This is a result of increasing solvent 

interaction effects with the chelates as the ratio of ligand 

to metal decreases from 3:1 to 1:1. 

Measurement of Cadmium Chelate Fluorescence 

Observation of the fluorescence of the zinc(phen)*^ 

species suggested that the analogous cadmium chelates might 

also fluoresce. Solutions of varying metal to ligand ratios 

were prepared as described previously and absorption and emis­

sion spectra measured. The fluorescence emission spectra are 

presented in Figures 4 and 5. 

The fluorescence of the cadmium species is less intense 

than that of the corresponding zinc chelate. The decrease of 

fluorescence intensity with the metal/ligand ratio increasing 

beyond 0.5 is also not observed in the cadmium solutions. This 

is apparently due to the lower formation constants of the 

cadmium-phen chelates. 

Determination of Quantum Efficiency of the Metal-phen Chelates 

The fluorescence quantum efficiency is defined as the 

number of quanta emitted by a fluorescing species divided by 

the number of quanta absorbed. This number is a fundamental 

physical quantity analogous to the molar absorptivity in ab­

sorption spectroscopy. In analytical chemistry the quantum 

efficiency helps define the detection limit of a procedure. 

The quantum efficiencies of the mono, bis, and tris zinc-

phen chelates are different, however a quantum efficiency for 
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Fig. 4. Fluorescence spectra of cadmium(phen)in acid 
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the solution containing a particular ratio of ligand to metal 

can be determined easily from the emission spectra. The quan­

tum efficiency of the solution of [phen]/[zinc] = 2 was deter­

mined. 

The integrated area of a corrected fluorescence emission 

spectrum is proportional to the total intensity of fluorescent 

light emitted by the solution, and hence to the product 

Iq e c 0 (28,29). Thus if the fluorescence emission spectra of 

two solutions are obtained with the same apparatus and with the 

same intensity of exciting light, Iq» then the ratio of their 

integrated areas can be used to determine the relative quantum 

efficiencies of the two solutions. Chen (30) evaluated quinine 

as a reference compound for the determination of quantum effi­

ciencies of fluorescent species and suggested the formula 

where Q is the quantum efficiency, F is the integrated area, A 

is the absorbance of the solution at the excitation wavelength, 

and I is the source intensity at the excitation wavelength. 

Thus the quantum efficiency of a solution may be determined by 

comparison with a solution whose quantum efficiency is known. 

Hensler (14) originally determined the quantum efficien­

cies of the free and protonated forms of phen in aqueous solu­

tion to be 0.017 and 0.007 respectively. In this work the 

quantum efficiency of the solution of [zinc]/[phen] = 0.5 was 

determined by comparison with that of the protonated phen and 
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found to be 0.110. This represents an increase in quantum 

efficiency of the chelate over the protonated ligand of a 

factor of about 16. 

A similar determination of the quantum efficiency of the 

cadmium-phen solution, of ligand to metal ratio two, gave a 

value of 0.050 as the efficiency of the cadmium chelate. 

Study of Substituted 1,10-phenanthrolines 

A number of substituted 1,10-phenanthrolines were investi­

gated along with the unsubstituted phen as potential fluoro-

metric reagents for zinc. Aqueous solutions of these compounds 

were prepared, and the fluorescence emission spectra were 

taken. The pH of the solutions was 3.0, and the excitation 

wavelength was 270 nm. The compounds, along with their meas­

ured emission maxima and relative intensities (ratios of peak 

area) are listed in Table 1. Their structures are shown in 

Figure 6. 

Table 1. Fluorescence of substituted 1,10-phenanthrolines 

Concen­ Emission Relative 
tration maximum intensity 

1,10-phenanthroline 1X10"5M 415 1.00 

3-5ulfonic acid-1,10-phen ff 400 .65 

5-sulfonic acid-1,10-phen If 405 .72 

5,6-dimethyl-1,10-phen rt 470 3.30 

5-methyl-l,10-phen ti 450 5.90 

4,7-dimethyl-1,10-phen 11 410 7.10 

5-phenyl-1,10-phen II 485 8.80 

4,7-dipheny1-1,10-phen It 450 122 
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1,10-Phenanthroline 

H3C CH3 

2,9-Dimethyl-4,7-diphenyl-
1,10-phenanthroline 

3-Sulfonic acid-
1,10-phenanthroline 

2,2'-Bipyridine 

4,7-Diphenyl-l,10-phenanthroline 

5-Sulfonic acid-
1,10-phenanthroline 

Fig. 6. Structures of 1,10-phenanthroline and related 
nitrogen heterocycles 
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6. CContinued) 
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The zinc chelates of these ligands were then prepared in 

aqueous solution and the corresponding emission spectra ob­

tained. The solutions used were of pH 2.8, [metalJ^Q^a.1 ~ 

3x10"^ M, and [phen]total ~ 1x10"^ M. The results are shown 

in Tables 2 and 3. 

Table 2. Relative fluorescence of zinc phenanthrolates 

Ligand Solvent X(emission 
maximum) 

nm 

Relative 
peak height 

1,10-phenanthroline HzO 372 1.00 

3-sulfonic acid-l,10-phen It 380 .88 

5-sulfonic acid-l,10-phen fl 365 1.22 

5,6-dimethyl-1,10-phen If 46C 2.77 

5-methyl-l,10-phen fl 440 1.40 

4,7-dimethyl-l,10-phen It 405 2.02 

5-phenyl-l,10-phen tt 475 .91 

4,7-diphenyl-l,10-phen 95% H9O-
5% ethanol 

446 6.40 ' 

Table 3. Relative fluorescence of cadmium phenanthrolates 
(compared to zinc-1,10-phen) 

Ligand Solvent X(emission 
maximum) 

Relative 
peak height 

1,10-phenanthroline H2O 375 .20 

3-sulfonic acid-l,10-phen fl 393 .26 

5-sulfonic acid-1,10-phen If 390 .29 

5,6-dimethyl-l,10-phen It 465 2.83 

5-methyl-1,10-phen II 446 1.40 

4,7-dime thy1-1,10-phen ft 408 1.85 

5-phenyl-l,10-phen II 480 .90 

4,7-diphenyl-l,10-phen 95% H2O 
5% ethanol 

450 6.43 
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From the data on Table 1 it is obvious that several 

ligands fluoresce more intensely than phen in aqueous solution. 

In particular, 4,7-diphenyl-phenCbathophenanthroline) fluores­

ces much more intensely than the unsubstituted phen. However, 

the data of Tables 2 and 3 indicate that the fluorescence of 

the chelates, in terms of peak height, is not as great relative 

to the phen chelates as are the ligand fluorescences compared 

to uncomplexed phen. Thus in most cases the chelate fluores­

cence of the substituted ligands is more intense than that of 

the unsubstituted phen, and the even stronger fluorescence of 

the free ligand creates a larger background. Only the spectra 

of the sulfonic acid ligands indicated a significantly greater 

fluorescence intensity for the chelate than the free ligand. 

The sulfonic acid ligands were not as sensitive as phen, how­

ever. Thus none of the substituted ligands provided the com­

bination of low base line and high sensitivity that would make 

it a significantly better fluorometric reagent than phen. 

Choice of Conditions 

The peak fluorescence intensity for the chelate species 

zinc(phen)^ occurs at about 372 nm. Phen shows two fluores­

cence peaks in dilute aqueous solution, one at about 370 nm 

resulting from the presence of the free base form, and one at 

415 nm resulting from the monoprotonated form. Thus there 

exist two immediately obvious ways in which to approach the 

measurement of a difference in fluorescence intensity in this 
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system. The first is to measure the fluorescence in acid solu­

tion at 372 nm and subtract the fluorescence resulting from 

Hphen*. The advantages in this are that it allows one to take 

full advantage of the fact that the quantum efficiency of the 

chelate is 20 times that of Hphen* and that it is possible, by 

proper choice of slits, to resolve the chelate band from the 

Hphen* fluorescence more completely. The disadvantages are 

that for low metal concentrations the measurement is taking 

place on a sharply sloping shoulder of what is predominantly a 

Hphen* fluorescence peak, and that in acid solutions of pH < 3, 

[Hphen*] » [phen]. Thus the fluorescent chelate concentra­

tion and the average number of ligands per metal are reduced 

because of the low concentration of the free base form of phen. 

The other alternative is to perform the determination in 

a solution of acidity such that [phen] » [Hphen*]. The seri­

ous disadvantage to this is that the free base form has a 

quantum efficiency almost 3 times that of the acid form and 

this reduces the observable difference in fluorescence emission 

between ligand and chelate as a result of a higher background. 

Results indicated that while for normal concentrations of 

metal either approach was satisfactory, at the lower levels of 

metal concentration the difficulty of complexing all the metal 

made the second approach more desirable. 

Using these conditions, the detection limits for the anal­

ysis of zinc and cadmium in aqueous solution were found to be 

about 0.1 ppb (2x10 ^ M) and 112 ppb (1x10 ^ M) respectively 
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using the definition of detection limit as that concentration 

giving a signal which is twice the rms noise. 

Using this approach, a series of zinc solutions of pH 7.2 

- 7 - 6 
ranging in concentration from 1x10 M to 1x10 M were pre­

pared and the relationship between fluorescence intensity and 

zinc concentration determined. The formal phen concentration 

was 3x10 ^ M and each solution was made 1x10 ^ M in phosphate 

buffer. The results are shown in Figure 7. From the plot it 

can be seen that the fluorescence of the complex is character­

ized by a linear increase in intensity and that the plot could 

be used as a calibration curve in analytical determinations. 

A similar experiment in acid solution yielded results of much 

poorer reproducibility, apparently because of the lower sensi­

tivity with decreased complexation. 

Interferences 

A study of interferences in the determination of zinc at 

the 63 ppb level was performed by preparing solutions contain­

ing known amounts of particular anions and cations as well as 

the zinc-phen chelates and noting the effect upon fluorescence 

intensity. All measurements were performed at pH 7.2. The 

phen concentration was 3x10 ^ M and the zinc concentration was 

1x10 ^ M. All solutions were 1x10M in phosphate since this 

was added as a buffer. Phosphate had been previously shown to 

give no interference. The results of this investigation are 

shown in Table 4. The error inherent in the method and instru-
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pH = 7 .2 
[PHEN],_,_,.3xlO-5M 

2 4 6 8 10 
ZINC CONCENTRATION (lO^W) 

Fig. 7. Fluorescence intensity as a function of zinc concen­
tration 
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Table 4. Interferences in the determination of 1x10"^ M zinc 

Species Added as Cone interference ^ error 
Cone zinc 

Na"^ • NagSO^ 2000 1.3 

Li+ LiNOj 100 1.3 

K* KNO3 100 1.0 

NH4NO3 10 1.0 

Mg+2 MgCN03)2 10 2.5 

Ca+2 Ca(NO3)2 10 2.5 

Sr+2 Sr(N03)2 10 1.0 

Ba+2 BaCN03)2 10 2.5 

Pb + 2 Pb(NO3)2 10 1.1 

Mn+2 MnS04 10 2.5 
Ni+2 Ni(N03)2 10 very high 

Co+2 C0SO4 10 very high 

Cu+2 CUSO4 10 very high 

Hg+2 Hg(N03)2 10 very high 

Cr+3 Cr2(504)3 10 17.5 

VO+2 VOSO4 10 15.0 

Fe+Z FeS04 10 50.0 

Fe+3 Fe2(304)3 10 2.5 

Ti(IV) Ti0S04 10 17.5 

UCVI) U02(N03)2 10 10.0 

Ag+ AgN03 10 very high 

IO3- NaI03 10 2.5 

NO3- NaN03 100 1.3 

C2H3O2" KC2H3O2 10 2.5 

CN" KCN 10 2.5 

F" NaF 100 0.0 

Cl" - NaCl 100 0.0 

J- KI 10 0.0 

SO4-2 Na2S04 1000 1.3 

Cr207"2 K2Cr207 10 45 
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mentation is 2-3%. 

l-roni the results it can be seen that the major interfer­

ences are most of the first row transition metals as well as 

uranium(VI), silver(I), and mercury(11)• 

Since these interferences are rather common, it was de­

cided to try to achieve a rapid, simple separation which would 

not hamper the sensitivity of the measuring technique. Anion 

exchange chromatography is such a separation method. 

A batch of 150-200 mesh Dowex 1x8 was washed repeatedly 

with water and acetone. An ethanol wash was performed and the 

wash solution was used to check for the presence of fluorescent 

impurities. None were found. Nine columns of about 0.8x2.0 

cm were prepared by slurrying the resin in water and pouring 

it into the column onto a small plug of firmly tamped glass 

wool. 

A procedure for the separation of small amounts of zinc 

or cadmium in synthetic samples from the interferences listed 

above was tested and is as follows. 

1. Place the sample, containing not less than 0.1 micro-

moles of zinc or cadmium in a beaker and add enough concen­

trated hydrochloric acid to make the solution 0.5 M in HCl. 

If silver precipitates, filter. 

2. Pass the sample solution through the column. Air 

pressure may be applied to speed the process. 

3. Pass 20-30 ml of 0.5 M HCl through the column. 
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4. Elute the zinc with 50 ml of 1 M Na2S04 into a 100 ml 

volumetric flask. 

5. Add enough 1 M sodium hydroxide to the collected 

effluent to bring the pH to about 7 and then add 1 ml of 0.1 M 

phosphate buffer. Dilute to volume. 

Using this procedure it is possible to separate 0.1 micro-

mole or more of zinc from 100 0 times as much each of chromium 

[III), nickel(II), vanadium(IV), cobalt(II), copper(11), iron 

(II), titanium(IV), and uranium(VI). Analysis of zinc in three 

synthetic samples containing these interferences yielded the 

results listed in Table 5. 

Table 5. Fluorometric determination of 0.1 micromole of zinc 
after separation 

Amount of zinc present 0.1000 micromole 

Amount found 0.0966 micromole 

Error 3.4% 

Relative standard deviation 6.0 pph 
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CONCLUSION 

Complexation of zinc and cadmium with 1,10-phenanthroline 

provides a highly sensitive direct fluorescence method of 

analysis for zinc and a moderately sensitive method for cad-, 

mium. IVhen interfering metals are present, a separation is 

necessary, but is easily accomplished. This method might be 

most appropriate to samples in which there are few other metal 

ions in high concentration, e.g. biological samples. In these 

cases the method could either be applied directly or, in case 

of other difficult-to-remove fluorescing materials, after 

digestion of the organic material. The procedure might also 

be easily applied to determinations of traces of zinc or cad­

mium in noninterfering metals. Or the separation procedure 

could be used to make the method more widely applicable. 
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PART II. PARTIALLY SULFONATED, MACRORETICULAR ION EXCHANGE 

RESINS IN THE SEPARATION OF METAL IONS 
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INTRODUCTION 

Purpose 

. Most common chemical analytical methods are not specific 

enough to determine the amount of one substance accurately in 

the presence of often massive quantities of other, interfering 

substances. Thus most analytical procedures incorporate a 

separation step to remove unwanted material and to permit the 

quantification of the sought-for-substance. 

Ion exchange separations by column chromatography have 

long been one of the principal methods of separation of metal 

ions in solution. Such separations usually required a minimum 

of 20-30 minutes for a separation and in rare cases the time 

necessary for separation reached months. Even when the separ­

ation was complete one often still had to measure the amount 

of the desired component by another method. Long separation 

and analysis times resulted in.expensive analyses. 

Recently the application of high pressure chromatographic 

techniques to ion exchange separation of metals has resulted 

in greatly reduced analysis times {31-35). High mobile phase 

velocities, small particle sizes and in-stream detection and 

quantitation have combined to permit the separation and analy­

sis of many different metal ions in five minutes or less. 

The ion exchange resins used in these separations have 

usually been strong acid or strong base type poly(styrene-

divinylbenzene) copolymers. They may be either gel-type beads 
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(microporous), or macroreticular (macroporous). With few 

exceptions they are usually full-capacity resins, i.e. resins 

containing as many ionic sites on the matrix as it is possible 

to obtain without destroying the polymer network. 

The rapid separations obtainable by high pressure chroma­

tography require that the sought-for-substance be removed from 

the resin easily under simple conditions. There are some 

metal ions which are very strongly retained on a cation ex­

change resin in strong acid media and require very concen­

trated acid or complexing agent for removal (36). 

Simple consideration of a typical ion exchange equilibrium 

A + BR = AR + B 

shows that under conditions of low loading of A, (i.e. A ions 

occupy less than 1% of the available resin sites) one way to 

lower the distribution ratio of A, where the distribution 

ratio D is defined as 

would be to reduce (BR), that is to reduce the resin capacity. 

This would allow the removal of ionic species from the resin 

under simpler conditions, e.g. lower concentrations of strong 

acids. Correspondingly, this would allow shorter elution 

times for the same eluent. 

The purpose of this study was threefold. 1. To produce 

separations of those metals which are strongly retained on 

fully Sulfonated cation exchangers in a short period of time 
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using simple and inexpensive eluents. 2. To study the effect 

of lowered capacity on selectivity of macroreticular sulfonic-

acid type exchangers. 3. To verify that the kinetics of metal 

ion-hydrogen ion exchange on partially sulfonated, macroretic­

ular resins are fast enough to permit rapid, separations with 

high resolution and good peak shape. 

Literature Survey 

Ion exchange 

Probably the first application of ion exchange has been 

attributed to Moses, who, in 3000 B.C. "rendered the saline 

water of the spring of Marah potable" by throwing a dead log 

into the spring (37). It has been suggested that carboxyl 

groups present in the log as a result of cellulose oxidation 

could have resulted in removal of metal ions by ion exchange. 

The discovery of the ion exchange process itself is more 

generally credited to Way (38) and Thompson (39) who, in 1850, 

found that calcium was replaced by ammonium ion in soils. Way 

traced the cause of this exchange in soils to the presence of 

double silicates of aluminum with sodium, potassium or calcium 

(40). 

For many years ion exchange was performed almost exclu­

sively with such natural and synthetic aluminum silicates. 

However, in 1935 Adams and Holmes (41) synthesized the first 

organic ion exchange resins. They prepared cation exchange 

resins with phenolic functional groups and anion exchange 
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resins with aromatic amine groups. The synthesis of sulfonic 

acid, polyCstyrene-divinylbenzene) copolymers by D'Alelio (42) 

in 1945 gave the first strong acid, monofunctional cation 

exchange resin. 

Most of the research with ion exchange resins has been 

with the sulfonated poly(styrene-divinylbenzene) type. A 

great deal of published material on full capacity resins of 

this type is available in the literature. Most of this mate­

rial is summarized by Rieman and Walton (37), Helfferich (43), 

and others. 

The first attempt to investigate partially sulfonated 

cation exchange resins was made by Boyd, Soldano and Bonner 

(44). They employed acid hydrolysis of fully sulfonated 

resins at 180-220 C to desulfonate the resin. By this means 

they hoped to achieve a random distribution of remaining func­

tional groups. There was, however, considerable evidence of 

side reactions leading to reduction of the sulfonate and 

breakdown of the polymer. 

Freeman and Aiyar (45) found that a dilute solution of 

sulfuric acid in nitrobenzene provides homogeneous sulfonation 

at room temperature for gel type beads of 1 to 4% divinyl-

benzene content and ranging in size from 250 to 700 microns 

in diameter. 

Reichenberg (46) attempted a random sulfonation by a sim­

ilar process of swelling the beads in nitrobenzene, allowing 

sulfuric acid to diffuse into the cold mixture, and then 
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raising the temperature to effect the sulfonation. However, 

he found that this technique could not be applied to resins 

containing more than about 15% divinylbenzene. 

Fricke (47) studied partially sulfonated ion exchange 

resin beads which had been prepared by the method of Freeman. 

Homogeneity, size distributions in various electrolyte solu­

tions, density, capacity and selectivity for univalent cation 

exchange systems were studied. All beads were sulfonated in 

the same reaction vessel concurrently and the partially sulfo­

nated beads were obtained by removing batches of copolymer 

beads from the reaction vessel at periodic time intervals. It 

was found that even using this technique individual fractions 

removed from the vessel could be separated into density frac­

tions, each of which had different capacities and which were 

therefore heterogeneously sulfonated. Fricke concluded that 

"sulfonation occurs to different extents at various sites 

within single beads and to different extents among beads which 

have been sulfonated concurrently". 

Fricke also studied a series of superficially sulfonated 

resin beads. These were prepared by a method which was based 

on the explanation of the sulfonation process presented by 

Freeman and Aiyar (45), and Wiley and Venkalachalan (48). The 

model assumes that there is a core in the center of the bead, 

which is never reached by sulfuric acid in a polar solvent 

such as water, and a shell around the core which is 100% 

sulfonated. Thus the bead sulfonates successive layers from 
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the outside in toward the core. The selectivity order for 

univalent cations was found to be the same as for fully sulfon­

ated poly(styrene-divinylbenzene) exchangers. The distribu­

tion coefficients for both the.surface sulfonated and the 

homogeneously partially sulfonated beads were less than those 

for the fully sulfonated beads. 

Skafi and Lieser (49,50,51) also investigated a series of 

superficially sulfonated resin beads. They prepared their own 

beads by copolymerization of styrene with 25 weight per cent 

divinylbenzene according to the method of D'Alelio (42). Dif­

ferent batches of the beads were then sulfonated for various 

lengths of time. By using high crosslinking (i.e. high di­

vinylbenzene content) and short sulfonation times they pro­

duced unsulfonated inert cores. The beads were 200 to 340 

microns in size and had capacities of from 5.5x10 ^ meq/g to 

3x10"^ meq/g. Results of their studies indicated that their 

superficially sulfonated beads possessed selectivity similar 

to that of fully sulfonated conventional ion exchange resins, 

that the rates of exchange on superficially sulfonated beads 

are much faster than on conventional resins, and that very 

fast separations in dilute eluents can be achieved on super­

ficially sulfonated resins. However, the kinetic and equi­

librium studies and the separations were all performed under 

tracer conditions using radiochemical methods of detection. 

The very low capacity resins which they used are not easily 

adaptable for use on an analytical scale. 
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Forced flow chromatography 

For several years, high pressure liquid chromatography 

has been used for the rapid separation and analysis of organic 

systems. The use of high pressures to force eluents through a 

packed column allows the use of fine particles as column pack­

ings which in turn permits more rapid equilibration of station­

ary and mobile phases and thus fast separations with high 

resolution. Application of high-speed techniques to inorganic 

separations has been slow in arriving (52). 

Several recent papers have dealt with rapid separations 

of metal ions by forced flow or pressurized ion exchange chro­

matography. Seymour (31-33) et a^. described a forced flow 

liquid chromatographic system employing gas pressurization of 

the mobile phase and spectrophotometric detection. The unique 

feature of the system is the absence of any but inert materials 

(Kel-F, Teflon, glass) from contact with the eluent. Analyti­

cal methods based on rapid separation by anion exchange and 

in-stream eluent analysis were presented for lead, iron, and 

several other metal ions. 

Fritz and Sickafoose (34) described a similar method for 

the separation and analysis of chromium. Chromium was first 

oxidized from chromium(III) to chromium(VI) and collected on 

an anion exchange column. The chromium(VI) is then stripped 

from the column with a perchlorate solution and the chromium 

measured spectrophotometrically as it is removed. The entire 

analysis cycle required 10 minutes. 



www.manaraa.com

42 

Kawazu and Fritz (35) separated a mixture of seven metal 

ions by forced flow cation exchange chromatography with 

eluents of hydrochloric acid in 2-propanol-water and HCl in 

acetone-water mixtures. Detection was achieved by addition of 

a color forming reagent to the column effluent stream. A mix­

ture of seven metal ions could be separated and detected in 

about 25 minutes. 

Campbell (53] separated the lanthanide ions by pressur­

ized ion exchange chromatography. The separation was done in 

alpha-hydroxyisobutyric acid on a cation exchange column. 

Although the separation itself took 2-4 hours, detection was 

by fraction collecting and radiochemical techniques. The 

total separation and analysis required about a week. 
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PREPARATION OF PARTIALLY SULFONATED RESIN BEADS 

Introduction 

The difficulties encountered by previous workers in the 

preparation of homogeneously sulfonated poly(styrene-divinyl-

benzene) have been described in a previous section. 0:."ly one 

group of workers (45) have claimed the production of homogene­

ously sulfonated low capacity resin beads by direct sulfona-

tion and Fricke was unable to duplicate that homogeneity using 

beads of only slightly higher crosslinking. 

The previous discussion of superficially sulfonated ion 

exchange resin beads revealed that such beads have very rapid 

exchange rates. This is a highly desirable characteristic in 

an exchange material which is to be used in high speed separa­

tions . 

It is known that poly(styrene-divinylbenzene) copolymer 

beads are highly hydrophobic. They can be penetrated only by 

a nonpolar solvent. When the beads are placed in sulfuric acid 

solution, the solution cannot initially penetrate and sulfon­

ates the exterior. After the first layer is sulfonated, the 

polar sulfuric acid can penetrate since ionic groups have been 

introduced into the bead, and the bead surface has been wetted. 

This was the rationale behind Frickes preparation of super­

ficially sulfonated resins. 
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Experimental 

Beads 

The copolymer materials used in this study for the prepa­

ration of partially sulfonated ion exchange resin beads was 

the commonly used poly(styrene-divinylbenzene) copolymer. How­

ever, these materials were different from all those partially 

and superficially sulfonated beads described previously. Most 

of the previous research into low capacity sulfonic acid type 

exchangers employed either solid copolymer beads (superficially 

sulfonated) or, more often, gel type exchangers (partially sul­

fonated). The beads used in this research were macroreticular. 

Macroreticular copolymer beads differ from conventional 

beads in several important ways. Macroreticular beads are 

produced by a special polymerization process which produces 

large, discrete physical pores in the copolymer matrix. Pore 

size and internal surface area can be varied over a wide range 

depending on the polymerization conditions. The pore walls 

are made up of hard, impenetrable chains of copolymer micro­

spheres. The crosslinking is very high and the beads them­

selves do not swell significantly. 

Gel-type beads, on the other hand are loose networks of 

polystyrene with varying amounts of crosslinking. Unless the 

crosslinking is very great they swell to two to three times 

their dry volume when placed in an appropriate solvent. Such 

pores that do exist are very small (on the order of 10 A) and 
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vary in size depending on crosslinking and solvent. 

Macroreticular ion exchange resins are more resistant to 

chemical attack and to alternate vetting and drying than are 

gel-type resins (54,55). Gel-type resins swell much more in a 

solvent of high dielectric constant such as water than in most 

organic solvents. This creates a mechanical strain on the 

resin network which often causes a breakage of the bead. It 

is also known that macroreticular resins reach equilibrium 

faster than gel-type resins in the exchange of ions of large 

size [56), and that in most cases selectivity coefficients for 

the exchange of metal ions + nHR = MR^ + nH^) on macro­

reticular resins are greater than on gel-type resins (57) if 

the fraction of resin in the metal form is small. Macroretic­

ular resins were chosen for this work because of these proper­

ties. Their chemical and physical stability give them long 

column life under conditions of forced flow chromatography. 

Beads which shrink or swell substantially depending on the 

eluent passing through the column require constant readjustment 

of the column to eliminate column dead volume. Part of the 

purpose of the research was to obtain rapid separations of 

metal ions having high ionic charge and, hence, a large hydra­

tion sphere making it difficult to pass into a microporous gel 

exchanger. 

It was believed, on the basis of the work discussed in the 

introduction, that one could prepare low capacity beads that 

were sulfonated primarily on those surfaces of the copolymer 
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bead that would be easiest for a polar solvent such as sul­

furic acid to reach. As the exterior surface of the bead was 

sulfonated, the sulfuric acid would penetrate into the pores 

of the bead, thus sulfonating the interior surfaces. 

The beads used in this research were obtained in 300-150 

micron size from Rohm and Haas Chemical Co. as XAD-2. This 

and other macroreticular copolymer beads marketed by the same 

company have been well characterized (58). XAD-2 resin beads 

have a surface area of 300 square meters per gram of copolymer 
O 

and an average pore diameter of 90 A. Their structure is 

shown in Figure 8. 

Reagents 

The water used in this work was distilled and then deion-

ized in an Illco-Way mixed-bed ion exchange column. 

The sulfonating agent was DuPont Reagent Grade 95-97% 

Sulfuric Acid, used as received. 

Reagent grade acetone and absolute methanol were obtained 

from Baker Chemical Co. and used as received. 

Standard sodium hydroxide and hydrochloric acid solutions 

were prepared by dissolving appropriate amounts of Baker Ana­

lyzed Reagent Sodium Hydroxide and DuPont Reagent Hydrochloric 

Acid in water. The sodium hydroxide solution was standardized 

against Baker Primary Standard Potassium Biphthalate which had 

been dried at 100 C for 2 hours. The hydrochloric acid solu­

tion was then standardized against the standard NaOH. 
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Fig. 8. Structure of poly(styrene-divinylbenzene) 
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Procedure 

Batches of the beads were taken as received in the 300-

150 micron size and placed in a Model 4-E Quaker City Mill and 

ground until they were all approximately 200-400 mesh. They 

were then dry-sieved and the portion not passing through the 

250 mesh sieve was placed back in the mill for further grind­

ing. The 250-325 mesh fraction (44-63 microns) size beads 

were removed for sulfonation. 

The 250-325 mesh beads were washed with water, ethanol, 

and acetone and vacuum dried. 2-10 g portions of the copolymer 

were taken and placed in 50-100 ml of concentrated sulfuric 

acid. The beads were then sulfonated at various temperatures 

ranging from 2 to 170°C for varying lengths of time, as shown 

in Table 6 . 

Table 6 . Sulfonation conditions 

Resin Reaction Time Resin Reaction Time 
capacity temp C hr capacity temp C hr 

3.70 170 .5 1.72 62 .33 
3.41 150 .5 1.35 57 .25 
3.13 130 .5 1.14 35 .5 
2.71 110 .5 1.05 25 .5 
2.66 95 .5 1.01 50 .3 
2.24 .80 .5 0.84 30 .5 
1.89 65 .5 0.23 2 .5 

The reaction mixture was then placed in a suction filter 

and the liquid rapidly removed. The beads were then washed 

several times with water, methanol and acetone and air dried. 

Extreme fines were removed by flotation in methanol. 
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Measurements of the dry weight of a quantity of resin in 

the hydrogen form were made by two different methods. 

1. Vacuum drying in a desiccator at 60°C overnight. 

2. Air drying in a suction filter after washing with 

ethanol and acetone. 

In no case did the weights obtained by the two methods 

differ by more than 0.5%. The second method, being the sim­

pler, was then used for all subsequent weight determinations. 

The dry hydrogen form weight capacity was determined by 

placing a weighed quantity of the dry, hydrogen form resin in 

a solution containing a stoichiometric excess of sodium 

hydroxide and back-titrating the excess with standard hydro­

chloric acid. Capacities of the twelve resins, determined 

R-SOgH* + Na"^ + OH" = R-SO^Na* + H^O 

by this method, ranged from .23 meq/g to 3.70 meq/g. 

The capacity and monofunctionality of the resins were 

then checked by direct pH titration. The titrations of each 

of the resins were performed in 1 M KNO^ using .1113 M NaOH as 

the titrant. Values of capacity determined by direct titration 

of the resins agreed within 1% of those obtained by the first 

method. 

Results 

Titration curves for two of the resins are shown in Fig­

ures 9 and 10. Both curves show the sharp break at the 

equivalence point which is characteristic of a strong acid 
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TITRATION OF 0.23 (meq./g.) RESIN 
IN IM KNO, 

20 25 30 

ml. OF No OH 
Fig. 9. Titration of 0.25 meq/g resin in 1 M KNO, 

3 
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TITRATION OF 2.24 meq./g. 

RESIN IN IM KNO, 12 

10 

8 

6 

4 

3 

2 

20 30 40 

ml.NaOH 

Fig. 10. Titration of 2.24 meq/g resin in 1 M KNOg 
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resin with few or no weak acid resin sites (59). 

Repetition of the direct titration capacity determination 

about one year after preparation of the resins gave results 

which agree within experimental error with the original deter­

minations. This indicates little or no decomposition of the 

resins with storage in the hydrogen form. This is in contrast 

to the results of Fricke who noted severe decomposition of his 

gel-type beads with storage (47). 
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MEASUREMENT OF EQUILIBRIA 

Introduction 

Macr©reticular cation exchange resins have been shown to 

have higher selectivity coefficients for a particular exchange 

in many cases than gel-type resins (57). However, loading has 

been shown to have a great effect on the selectivity coeffi­

cient for an exchange in resins of high crosslinking; the 

selectivity coefficient decreasing much faster with increased 

loading than for more lightly crosslinked resin (60,61). For 

these reasons, all determinations of the distribution ratio or 

selectivity coefficient were made at a loading of less than 1% 

of the total capacity of the resin. 

Equilibrium for cations exchanging on a sulfonic acid 

cation exchanger is generally represented as 

mA"^^ + nBR = nB*^ + mAR 
m n 

where R represents the organic exchanger. The thermodynamic 

equilibrium constant for the equilibrium is defined as 

a m 
„ ^ ̂ AR ^B 
eq - n m 

^BR *A 

where "a" is the activity of the species, whether it be in the 

resin phase or in solution. should depend only on the tem­

perature, the nature of the resin and of the ions, A and B. 

The exact evaluation of depends on the choice of standard 

states in the exchanger and in the solution and, depending on 
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these choices, is either one by definition, or is rather tedi­

ous to calculate. No experimental evaluations of were done 

in this work. 

is related to two other useful quantities, E, the 

selectivity coefficient, and K', the corrected selectivity 

coefficient 

[AR„]" [B]° 
E = 

[BR]% [A]* 

Yg 
K' = E — 

The selectivity coefficient, E, represents the net result 

of all interactions which result in the preference of the 

resin for one ion over another. 

K' takes into account the activity coefficients of the ex­

changing species in the solution. Thus K' reflects the prefer­

ences which occur in the resin phase alone. 

In practical applications of ion exchange, equilibrium is 

most easily expressed in terms of the distribution coefficient 

D, defined by 

[A+»] 

or 

D = amount of A/g of dry resin 

amount of A/ml of mobile phase 

In this work the terms distribution ratio and distribu­
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tion coefficient will be used interchangeably. The relative 

distribution coefficients of two or more species in a partic­

ular solvent provides an indication of the possibility of 

achieving a separation in liquid chromatography. The larger 

the distribution coefficient, the larger will be the retention 

time or volume. The greater the difference in D values for 

two ions in a particular eluent, the easier is their separa­

tion. Conversely, if their D values are equal, separation 

cannot be achieved in that solvent. 

In this work the fraction of the total resin anionic sites 

taken up by the metal ion in the equilibrium studies was main­

tained at less than 1%, and figures in this section compare 

data for exchangers only where [H*] = 1, and the concentration 

of metal ion in solution is <10 M. The significance of these 

choices can now be seen. 

K' was defined as E(Yg/Y™). This quantity reflects pref­

erences in the resin phase alone. For this work it can be 

rewritten 

[MR ] [H+]" YS 
K' = —2 ii 

[W "] [HR]" 

now [H*] = 1 and [HR] = meq/g resin = the resin capacity. In 

constant media of high ionic strength where [H^]>>[M*^], 

Y^/Ym will be nearly constant. Thus K' can be reduced to 

K' = 5.^ (constant) 

= E(constant) 
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Thus.in figures where E is plotted against capacity, 

the shape of the plot may be taken to indicate the relative 

preference of the resin phase only for a particular ion at a 

particular capacity since multiplying E by a constant would 

only shift the plot up or down, but would not change its 

shape. 

Experimental 

Distribution ratios of metal ions on the various resins 

were determined by two different methods. The first of these 

was batch equilibration. Batch equilibration has the advan­

tage that a wider range of distribution ratios can be easily 

measured than in the second method, which will be discussed. 

In the batch method about 3 g of dry, hydrogen form resin 

was weighed and added to 20 ml of a dilute solution of the 

metal ion. The mixtures were then shaken on a Burrell Wrist 

Action Shaker for at least 1.5 hours. The mixtures were then 

centrifuged and part of the supernatant liquid was removed by 

pipet for analysis. The amount of metal ion remaining in the 

supernatent was then determined by the appropriate EDTA titra­

tion method listed in Table 7 . 

The stock metal ion solutions used in these determina­

tions were prepared by dissolving reagent grade nitrates, or 

perchlorates in water to produce stock solutions which were 

approximately 0.1 M and were then standardized by titration 

with EDTA. The solutions used in the batch equilibrations 
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Table 7 . EDTA titration conditions 

Metal PH Buffer Indicator Note 

Cu 6 pyridine NAS 
Zn 6 ft tl 

Pb 6 H ft 

Ni 6 It 11 

Al 6 If tt Back titrate 
with Cu 

Mg 10 NH.0H-NH,C1 Calmagite 
Ca 10 4 n 3 tr Back titrate 

with Mg 
Th 3 Xylenol Orange 

with Mg 

were then prepared by diluting aliquots of the stock solutions 

and of the desired background acid to volume in a volumetric 

flask to produce a solution approximately 1x10 M in the de­

sired metal. 

The second method of obtaining distribution ratios for 

metal ions on the resins involved measurement of the recorded 

column elution volumes. The elution volume is related to the 

weight distribution ratio by the expression 

v = DCW) + Vm 

where v is the elution volume to the peak maximum, D is the 

weight distribution ratio, W is the weight of resin in the 

column, and Vjjj is the total volume of mobile phase between 

injection and detection points. Thus the distribution ratio 

is expressed as: 

Five columns were prepared for use in these determina­

tions. They are listed in Table 8. 
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Table 8 . Columns used in determination of distribution 
ratios 

Column Weight of Column Resin V 
# resin dimensions capacity. 

1 2.25 g 6.3x200 mm 0.23 meq/g 4.3 ml 
2 .67 4x130 0.84 1.9 
3 .40 4x73 1.01 1.4 
4 .37 4x70 1.89 1.3 
5 .41 2.8x130 2.66 1.4 

Column 1 was a Chromatronix Model LC-6M-13 column fitted 

with adjustable outlet plungers to fit closely against the bed 

in order to minimize dead volume. The column was dry packed 

with 2.25 g of resin and the plungers inserted. The column 

was then placed in position in the chromatograph and water was 

pumped through. This was followed by 1 M HCl. The plungers 

were readjusted after the entire bed had been wetted. 

Columns 2-4 were prepared by dry packing the resin phase 

directly into the column with the aid of a funnel while tap­

ping the sides. The bed was then lightly tamped. This proc­

ess was repeated until the columns were nearly full. A small 

plug of glass wool was placed against each end of the bed to 

hold it in place and to reduce dead volume. The columns were 

then placed in the eluent line and wetted as before. 

Column 5 was slurry-packed. The resin was slurried in 

water and poured into a funnel attached to the column with 

tygon tubing. Suction was applied at the lower end of the 

column to increase the rate of packing and reduce capacity 
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segregation by settling. A plug of glass wool was placed at 

each end of the column as before. 

In all cases the application of the pressurized eluent 

to the resin bed resulted in some shrinkage of the bed with 

use. This tended to produce an undesirable dead volume in the 

column. This was initially eliminated by adding a weighed 

quantity of the same resin to the bed, i.e. additional packing. 

In cases where the increase in column dead volume was small, 

the space could be eliminated by the addition of a small amount 

of glass wool. The bed shrinkage problem has been discussed 

by Seymour [62). 

Columns 2-5 were simple glass tubes which were adapted to 

allow use of Chromatronix type MB-3 Cheminert Column Fittings. 

The mobile phase volume for each column was determined in 

the following way. The column was placed in position in the 

eluent stream of the chromatograph and 1 M HCl was equilibrated 

with the column. [See the section on instrumentation.) A 

solution of Arsenazo III was then added to the column effluent 

by means of the mixing chamber. The rate of flow of the Arsen­

azo III solution, which also contained 2 M NH^, was adjusted 

to produce a pH of about 5 in the effluent stream. The spec­

trophotometer was then adjusted to read zero for this solution. 

A 56.3-microliter volume of water was then injected onto the 

column by means of the sample injection valve and the recorder 

trace begun. When the water sample had passed through the 

column and reached the mixing chamber the eluent became 
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suddenly basic, due to the unneutralized NHg, and the Arsenazo 

III took on a blue color which could be measured at 650 nm. 

The mobile phase volume was thus taken to be the elution 

volume for water, which is not retained. 

The distribution ratios of several different ions were 

then determined by a procedure similar to that just described. 

A 56.3-yl sample of the metal ion solution was injected into 

the flowing eluent stream with the strip chart recorder run­

ning. The injection time was marked. The eluent was then 

passed through the column at a flow rate of 1 ml/min until the 

detection System indicated that the sample had eluted. The 

elution volume was then measured and D calculated. 

For a description of the reagents used in this part of 

the work, see the section on separations. 

Results 

The measured distribution ratios in various media as 

determined by both batch and column methods are summarized in 

Tables 9, 10, 11, and 12. Note the very large distribution 

ratio of thorium compared to other ions even on resins of low 

capacity. Zirconium and the lanthanides also exhibit rela­

tively large distribution ratios. A clear correlation between 

cationic charge and D can be observed at all capacities. 

Most metal ions show lower distribution ratios on cation 

exchangers in HCl than in HNO^ or HCIO^. This is shown to be 

the case for these resins. The few exceptions of this general-
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Table 9 . Distribution ratios of metal ions on 0.84 Meq/g resin 

.5M IM 
HCl 

2M 3M 4M 8M 
HCIO4 
IM 2M 

HNO3 
IM 2M 

Th(IV) 63 11.5 4.2 1.6 .4 40 7.6 

Zr(IV) 6.1 1.95 .8 9.1 

La(III) 11.2 1.65 .9 .2 22.3 3.3 7.6 1.3 

Eu(III) 9.1 1.5 .6 0 16.6 2.8 6.0 1.0 

Ho(III) 7.6 1.0 .2 0 11.2 1.5 5.5 1.0 

Al(III) .15 0 0 

Ti(IV) .15 0 0 

Ba(II) 2.1 0 0 

Sr(II) .9 0 0 

Ca(II) 0 0 0 

Pb(II) 5.1 .75 9.9 1.9 

Cu(II) 3.3 0 1.2 .9 

Zn(II) 3.1 0 .9 .9 

Ni(II) 3.0 0 .9 .9 
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Table 10. Distribution Ratios of Metal Ions on 1^01 Meq/g 
resin 

HCl HCIO4 
.2M .5M IM .3M .5M IM 2M 

Th(IV) 82 

Pb(II) 8.0 1.0 27.5 5.5 

Cu(II) 25.9 3.5 .5 12.2 5.1 1.8 

Zn(II) 23.5 3.25 .2 8.3 4.6 1.3 

Ni(II) 23.5 3.5 .8 9.5 4.4 1.3 

Ba(II) 5.0 

Sr(II) 3.0 

Ca(II) 2.5 

MgClI) 1.4 

Al(III) 3.5 

Table 11. Distribution ratios of metal ions on 1.89 Meq/g 
resin 

HCl HCIO4 
. 5M IM 2M IM 

Th(IV) >125 >50 

La(III) >125 

Al(III) 2.0 19 

CaCIII) 34 16.3 3.0 22 

Mg(II) 12.4 • 2.4 4.6 

PbClI] 6.5 >100 

CuClI) 3.2 5.3 

Zn(II) 1.8 4.3 

Ni(II) 4.0 4.0 
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Table 12. Distribution ratios of metal ions on 2.66 Meq/g 
resin 

IM 
HCl 
4M 8M 

HCIO4 
IM 

AlCIII) 55 

Pb(II) 24 

Ca(II) 6.5 2.2 140 

Mg(II) 11.3 - • • 

Cu(II) 10 15.5 

Zn(II) 9.5 14.2 

Ni(II) 8.9 15 

ization are thorium and the lanthanides, which form moderately 

strong nitrate complexes. The influence of complexation on 

the distribution ratio is especially evident in the case of 

lead. 

Figures 11 and 12 show a plot of distribution ratio ver­

sus capacity for a variety of metal ions. The most obvious 

feature of the graphs is the sharp increase in D with increas­

ing capacity. This was to be expected purely from mass action 

effects. However, consideration of mass action effects, 

ignoring activity coefficients, indicates that a plot of the 

logarithm of the distribution ratio as a function of the log­

arithm of the capacity should yield a straight line of slope 

n, where n is the valence of the metal ion. Clearly this is 

not the case. The slopes increase with increasing capacity. 

It is not obvious whether the slopes continue to increase at 

the very high capacity end pr whether the plot becomes linear. 
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Fig. 11. Distribution ratios of metal ions in 1 M HCl on 
low capacity resins 
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Fig. 12. Distribution ratios of metal ions in 1 M HCIO4 on 
low capacity resins 
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If the abscissa is made linear in capacity, several of the 

plots become linear. The reason for this is not obvious. 

Rates of Exchange 

It was considered desirable to obtain some indication of 

the rates of exchange of metal ions on the partially sulfon­

ated resins. To this end a measurement of the rate of ex­

change was conducted by the batch equilibration method. A 

weighed quantity of resin was placed in a flask containing a 

dilute metal ion solution and the solution was shaken for a 

measured length of time. This was the same procedure used in 

the batch equilibria work. The liquid was then rapidly fil­

tered off and the solution analyzed. The results indicated 

that the reaction was too fast to be measured accurately by 

this method. This is undoubtedly due to the relatively small 

particle sizes employed throughout this work. 

Discussion and Theory 

An ion exchange resin is a very complex system and any 

attempt to explain processes occurring in such a system in a 

limited amount of time must do so by making what may appear to 

be drastic assumptions in order to achieve simplification. 

As has been shown, completely homogeneous ion exchange beads 

are very difficult to prepare. As Freeman and Aiyar have 

pointed out; "The significance of ion exchange measurements 

depends on the nature and definition of the ion exchange 
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material. ...ion exchange resin beads are seriously hetero­

geneous and therefore, incapable of being precisely defined" 

(45). 

As if to complicate matters, most attempts to explain the 

behavior of ion exchangers have been concerned with models 

based on gel-type, poly(styrene-divinylbenzène) exchangers. 

In most cases the accuracy of the model declines with increas­

ing crosslinking. The ideal state is considered to be the 

zero crosslinked resin and data for this state can only be 

obtained by extrapolation from data obtained using resins of 

finite crosslinking. 

One of the first attempts to explain ion exchange selec-

tivities was that proposed by Gregor (63,64). Gregpr consid­

ered selectivity to arise primarily as a result of differ­

ences in the partial volumes of counterions in the resin. He 

assumed the ions to be hydrated in the exchanger and that the 

selectivity could be expressed by 

Rnn K'a/A = . 

where and Vg are values taken to be the hydrated volumes of 

counterions A and B in the resin and IT is the "elastic counter-

pressure" exerted by the resin matrix. This model leads to 

several conclusions regarding ion exchange resin behavior. 

First, it predicts that the counterion with the smaller hydrat­

ed radius will always have the greater distribution ratio, 

i.e. if > Vg then > 1. This correctly predicts the 
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order of affinity for alkali metal ions, Cs > K > Na > Li, at 

low crosslinkings. Another aspect of the theory is that if 

> Vg, then as Xg, the equivalent fraction of total ionic 

sites on the resin occupied by B, increases, the resin will 

be expected to contract. This is what is known to occur. 

Also, if - Vg does not change sign, then In K' should not 

change sign since ir is positive. Finally, if the crosslinking 

is increased, then ir increases and the binding strength in­

creases, but the selectivity order should not change. This is 

not the case for resins of medium crosslinking involving Cs or 

Na as a counterion and this aspect of the theory fails entire­

ly at higher crosslinkings. Thus the model of Gregor fails to 

account for selectivity inversions and requires that one ex­

plain why - Vg should change in sign in such cases. 

The theory of Rice and Harris (65) assumes that the 

selectivity of an ion exchanger is a result of primarily two 

factors, the strength of ion-pair formation between counter 

ions and fixed ionic groups on the resin, and the electro­

static repulsion between adjacent resin sites. This repul­

sion is considered to be the only force responsible for swell­

ing of the resin. This theory does not directly concern 

itself with hydrated volumes of particular ions involved in 

the exchange. This theory, like that of Gregor, does not 

easily explain affinity reversals since this would require 

that the so-called "binding constants" vary. 
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The theory of Eisenman as described by Rieman and Walton 

(37) considers electrostatic interactions to be the primary 

cause of selectivity and affinité reversals. Hydration of ions 

is considered important as a result of the energies of hydra­

tion involved rather than because of hydrated ionic radius or 

volume. In its simplest form this theory treats both the 

counterion and the resin site as non-polarizable point charges 

at the center of an incompressible sphere. The electrostatic 

energy is given directly by Coulomb's law as (for univalent 

exchange) 

where r^ and r^ are the radii of anionic resin site and cation 

respectively and e is the electrostatic charge. The free 

energy required to dehydrate or rearrange water molecules 

around the anionic site and cation is also considered. The 

total energy involved in these two processes for each of two 

ions determines selectivity. 

Eisenman's theory has been successful primarily in pre­

dicting the different affinity order of carboxylic acid (weak 

acid) resins, for univalent cations, as compared to sulfonic 

acid resins. The carboxylate group is of small size and the 

sulfonic acid group of larger size. The theory predicts that 

if rR is large, then the difference in electrostatic inter­

action energy between the two competing counterions will be 

small, and the selectivity will be determined by the ease of 

dehydration of the cation. Thus for sulfonic acid exchangers 
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large), the order of selectivity should be Cs > Rb > K 

Na > Li which is the case. When r^ is small, as for the 

carboxylate group the electrostatic term will be predominate 

and the smaller ion will be preferred. Thus the order of 

affinity is Li > Na > K. Reversals in affinity can thus be 

accounted for by variations in r^^. 

Pauley (66) preceded Eisenman's electrostatic approach by 

eight years with an extremely simple one of his own. Pauley's 

theory considers the resin to be a series of negative point 

charges randomly distributed with cations bound to the anionic 

sites an average distance, r, away. This average distance may 

be considered to be the sum of the radii of the resin anion, 

r^, and the bound cation, r^. The free energy change involved 

in the exchange of cations, and thus may be determined 

from calculations of the electrostatic work necessary to re­

move each of the two types of cations from their distance of 

closest approach to infinity. Swelling pressure effects are 

ignored and assumed to be negligible. On the basis of this 

theory it is necessary to make certain assumptions about r^ 

and r^. Pauley assumes that the resin anion is relatively 

unhydrated and that r^^ is the crystallographic radius of oxy­

gen. The assumptions are also made, based on data from the 

literature, that: 1. cations in solution are hydrated; 2. 

cations are also solvated inside the resin; and 3. that the 

a° term in the derived Debye-Huckel equations for concentrated 

electrolytes represent a true "distance of closest approach" 
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of oppositely charged ions in solution and that these a 

values may be taken as equal to r^, r^, etc. Thus the free 

energy of exchange may be expressed by 

S.- Si 

and n y y 7 7 

^eq Z.SRTD^ r^+rg ^ 

where N is Avogadros number, e is the electrostatic unit 

charge, z represents the charge of the subscripted ion, and 

D is the dielectric constant of the medium. 

Pauley used literature "a°" values for cations and ob­

tained good agreement between calculated and experimentally 

determined equilibrium constants. This explanation ignores 

second order coulombic attractions and swelling pressure 

effects. 

The primary objection to Pauley's theory, besides its 

extreme simplicity, is that the calculations are heavily 

'r dependent upon the values assumed for rn and a°. The values 

of a° obtained from the literature show significant disagree­

ment . 

Most theories of ion exchange selectivity assume a high 

degree of uniformity within the resin in order to simplify the 

model. However, Reichenberg (46) has shown that heterogenei­

ties produced by the sulfonation process can cause substantial 

differences in selectivity. He found that the rate of sulfo-
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nation of cross-linked polystyrene decreases with increasing 

crosslinking; however the rate of desulfonation by a method 

similar to that of Boyd et aJ. (44), but less destructive of 

crosslinks, is independent of crosslinking. He prepared 

partially sulfonated resins of identical capacity and cross-

linking by each process. The two resins were found to have 

very different selectivity properties. These differences can 

be explained if one assumes that: 1. crosslinking is not 

uniform and the sulfonation process preferentially sulfonates 

those areas of lower crosslinking first, whereas the desulfo­

nation process is uniform; 2. the local differences in cross-

linking affect the selectivity. 

There are many other factors involved in selectivity 

which have not been considered in the theoretical models dis­

cussed above. Among the more important are ion-induced dipole 

effects resulting from the polarizability of cation and anion; 

sieve action by the resin in excluding larger ions; secondary 

columbic attractions; and deviations of both cation and 

anionic sites from the point charge ideality assumed in 

Pauley's and Eisenman's theories. 

In choosing a model or combination of models for use in 

explaining the selectivity behavior of multivalent ions on 

partially sulfonated XAD-2, it is necessary to first consider 

the nature of the resin. 

The copolymer beads from which the resins were made have 

been described in a previous section. Essentially the resin 
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O 
consists of pores or channels averaging 90 A in diameter. 

The pore walls are sulfonated to varying extents with the con­

centration of sites decreasing toward the center. The resin 

is very highly crosslinked and undergoes little or no swell­

ing. Liquid take up is the same no matter what the liquid 

(55). This appears to rule out the swelling pressure model 

of Gregor. 

The theory of Rice and Harris gives little indication of 

the factors which determine the values of the binding con­

stants. The values they used were determined empirically. 

This theory does not predict affinity reversals such as that 

shown on Figure 12. 

The theory of Eisenman has been perhaps the most success­

ful at predicting experimentally observed selectivity orders 

for univalent cations. However, it ignores the well-docu­

mented data indicating that counterions in the resin phase 

remain hydrated (at least partially) even when associated with 

a resin site (43). Eisenman's theory predicts that the purely 

electrostatic attractions will be greatest for those ions 

having the smallest crystal ionic radius and that the decisive 

factor for sulfonic acid exchangers will be the ease of dehy­

dration of the cation. His theory is not easily applicable to 

multivalent cations. 

Pauley's model is attractive in its simplicity. It pre­

dicts directly that exchangers will prefer ions of small 

hydrated size and large valence. Although no quantitative 
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calculations as such using this model will be presented, it 

is Pauley's model along with other qualitative considerations 

which will be relied upon. 

Consider a poly(styrene-divinylbenzene) copolymer bead, 

rather inflexible and containing open pores or channels 

throughout its structure with walls which are impenetrable to 

solvent or solute. As the first few anionic sites are pro­

duced on the resin the sites remain, on an average, distant 

from one another. A cation can be bound to the sulfonic acid 

site at its distance of closest approach, a°, while remaining 

comfortably hydrated. A multivalent cation associated with 

one anionic site will require a larger hydration sphere, gen­

erally, than a proton associated with the same site. Thus as 

the capacity continues to be increased, the fixed metal ions 

come closer together. Solvation shells become crowded and 

repulsions of "unneutralized" counterions become more signifi­

cant. This results in an increasing preference by the resin 

sites for protons. The sites are not yet close enough to­

gether to allow the multivalent metal ions to associate, at 

their distance of closest approach, with more than one anionic 

site. 

When the site density becomes large enough to allow more 

than one site to interact with a multivalent cation at the 

distance of closest approach, the resin will begin to prefer 

the metal ion once again. As the site density at the pore 

wall increases, the attractive effects of nearby sites will. 
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to an ever increasing extent, reinforce the selectivity of the 

resin for the metal. These attractions will be greatest for 

those ions which have the smaller hydrated size since they will 

have a shorter distance of closest approach to the anionic 

sites and thus to the pore wall and all other anionic sites. 

The more acidic cations, (those with a smaller crystal ionic 

radius or larger z) will have a more densely packed hydration 

sphere, greater shielding from negative sites and a greater 

distance from secondary sites. 

Figure 13 shows a plot of the selectivity coefficient as 

a function of resin capacity for a number of ions. In each 

case E initially decreases sharply. However, between 0.5 and 

1.5 meq/g it can be seen that the influence of capacity on the 

resin selectivity changes sharply. Above 1.5 meq/g, the 

influence of increasing capacity remains relatively constant. 

Figure 14 shows a plot of the average distance between 

anionic sites as a function of capacity, assuming a pore sur-

2 face area of 300 m /g and random sulfonation. The surface 

area of the resin was obtained from reference (57)-

According to published data (67) , the a° values for most 
o o 

multivalent ions are in the range 3-4 A. If a value of 1 A 

is used to approximate r^, then a metal ion should be able, on 

the average, to approach more than one site within its dis­

tance of closest approach when the average distances between 
O 

sites reaches 8-10 A. From Figure 14 it is evident that this 

point is reached at a capacity of about 0.5-1.0 meq/g. This 
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corresponds to the sharp changes in slope shown on Figure 13, 

indicating the sharp change in effect of increasing capacity 

on resin selectivity. 

There are a number of other factors which might be of 

varying importance in explaining the selectivity of these 

resins. First, it is known that partitioning of the metal 

ions sometimes occurs on the resin matrix itself (37,43). If 

such partitioning occurred in this case, it might account for 

part of the high selectivities noted at very low capacities. 

This was checked by a column measurement of the distribution 

ratio of zinc on unsulfonated XAD-2 and D was found to be 

nearly zero. 

Second, mutual polarization is known to be extremely 

important in determining selectivity in some cases involving 

highly polarizable cations such as silver(I) or copper(I) (43). 

This effect increases the selectivity of the resin for the 

cation of larger crystal radius. 

It is also possible that, as Reichenberg suggested, the 

sulfonation process sulfonates first the weakly crosslinked 

areas. This would also produce an increasing selectivity for 

cations of high valence and small a°. 
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SEPARATIONS 

Introduction 

The primary purpose of this work was to produce rapid, 

simple separations and analyses of solutions of various metal 

ions. The separations which were attempted were aimed either 

at separating ions having high distribution ratios on conven­

tional resins or at effecting those separations which pub­

lished information on ion exchange, or the general scan of 

distribution behavior from the previous section, indicated 

were feasible. All possible separations were not attempted, 

rather the intent was to demonstrate the utility of the par­

tially sulfonated resins in the separation and quantitative 

analysis of metal ions by forced flow chromatography. 

Instrumentation 

The chromatograph used in this work is outlined in Figure 

15. All valves, fittings and columns were either purchased 

from Chromatronix, Inc. of Berkeley, Calif., or were machined 

from raw materials. All connecting tubing in the eluent sys­

tem was .031" i.d. Teflon tubing. 

Commercially available equipment is generally made avail­

able on the assumption that the user will be using only 

organic solvents or noncorrosive inorganic solvents as eluents. 

These instruments are intended for high pressure organic 

liquid chromatography. Valves, columns, pumps, e.g. generally 

contain a large amount of stainless steel in contact with the 
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eluting solvent. Few commercial liquid chromatographs are 

suitable for use with the highly corrosive solvents employed 

in inorganic analysis. For this reason the chromatograph 

shown was designed to allow only glass, Teflon or Kel-F plas­

tic to come into contact with the mobile phase. 

The eluent tank was a simple glass bottle or beaker con­

taining the eluent. 

The mobile phase was pumped from the eluent tank by a 

CMP-2 "Cheminert" metering pump purchased from Chromatronix. 

This pump is rated at 0-500 psi. It employs a three-piston 

design to reduce pressure and flow pulsation and to provide 

very accurate control of flow rate. The pump can be adjusted 

for flow rates of 2,4 to 120 ml/hr. Flow control is provided 

by pneumatically actuated three-way valves which control the 

filling and draining of each piston. ; 

The sample injection valve was an SV-8081 Chromatronix 

valve fitted with a calibrated sample loop which allowed injec­

tion of a sample volume ranging from 50 yl to 10 ml. Most of 

this work was performed using a 56.3 lil sample loop. 

From the sample injection valve the solvent passed on to 

the analytical column which has been previously described. In 

addition to the five columns prepared for the determination of 

distribution ratios, 4 additional columns were used in the 

separation study. Of these none were extensively used except 

for a 1 m X 2.5 mm column of Dowex 50 x 8 which will be de­

scribed in a later section. 
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The mixing chamber was the whirlpool, divided tangential 

entry chamber developed by Sickafoose (68). This chamber has 

a volume of 17 yl. 

Color reagent addition to the mixing chamber was achieved 

by means of a series of three pressurized bottles of indicator 

solution. The color reagent tanks were pressurized by a con­

nection to the laboratory air line (0-90 psi) via 1/4" Dacron 

pressure tubing. A Johnson Service Co. R-130 pressure regu­

lator and Koby air filter were placed in the air line to con­

trol the color reagent flow rate. A pressure gauge allowed 

continuous monitoring of the reservoir pressure (which never 

exceeded 5 psi). The three color reagent tanks were connected 

to a 4-position Teflon valve which allowed any one or none of 

the three tanks to be connected to the mixing chamber. A 

Roger Gilmont size #1, F-llOO flow meter was placed in the 

color reagent stream to allow continuous monitoring of the 

reagent flow rate. 

The column effluent, mixed with color-forming reagent, 

then passed to the detector, a Beckman Model B variable wave­

length, visible range, spectrophotometer. The sample compart­

ment was altered to accommodate a flow-through cell of light 

path 1.0 cm and internal volume of 32 yl. 

The spectrophotometer output, which was linear in percent 

transmittance, was amplified and converted to read linearly in 

absorbance by means of a logarithmic amplifier. 
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The amplifier output was fed to an E. H. Sargent S-72150 

recorder which provided a display of input voltage (absorbance) 

as a function of time. The Sargent recorder was fitted with a 

Disc Instruments Model E-4 integrator. 

Operational Notes 

Dissolved gases in the eluents used in high pressure 

chromatography, often form bubbles in the chromatography espe­

cially at the low pressure end of the analytical column (69, 

70). Bubbles, passing through the flow-through absorbance cell 

may create a noise level which swamps the signal. Bubbles 

became especially troublesome in this system when they became 

trapped in the pump pistons. This resulted in periodic com­

pression and expansion which produced distinct pulses in the 

eluent flow. These pulses manifest themselves in the form of 

periodic, very sharp peaks or minima in the recorder trace. 

It was also found that the flow-through detection cell acted 

like a bubble trap, collecting bubbles as they passed in. 

This created an unstable baseline or plateau in the chromato-

gram. 

Degassing of the mobile phase by heating or vacuum prior 

to use is the most obvious way to reduce bubble formation, and 

it was employed. However, complete degassing of some solvents 

was difficult, and although the difficulties caused by bubble 

formation were reduced, they were not completely eliminated. 

It was found, however, that entrapment of the bubbles in the 
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eluent system, which was the crux of the problem, could be 

eliminated simply by tilting the pump and spectrophotometer 

such that the exit port was 10-20 degrees higher than the in­

let port. This was done by placing a shim under the appropri­

ate end of the instrument. This effectively eliminated bubble 

entrapment in the pump and detection cell, allowing the few 

bubbles remaining after degassing to pass quickly through the 

system, showing up as only a small "blip" on the chromatogram. 

It is appropriate here to discuss some of the advantages 

of the type of chromatograph herein described as compared to 

those used in other work (62,68). The difference lies mainly 

in the method of propelling the solvent through the column. 

The chromatograph described by Sickafoose and Seymour employs 

helium pressurization for solvent propulsion. The advantages 

obtained by using the metering pump are: 1. The metering 

pump provides an accurate and constant flow rate regardless of 

solvent viscosity. The flow rate can be controlled easily by 

a switch on the front panel. With a constant pressure system 

it is necessary to determine the relationship between flow­

meter reading and flow rate for the eluent. This can only be 

done by experiment. A change in solvent to a solvent of dif­

ferent viscosity causes a change in flow rate. This is signif­

icant because peak height and peak area of an elution curve 

are both flow-rate dependent. Any difficulty in accurately 

reproducing the flow rate for a determination will result in 

error. 2. The pressurized reservoir system allows almost 
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instantaneous change of eluent passing through the column. 

This produces so-called "solvent change peaks" which appear 

as an absorption peak accompanying the passage of 2-eluent 

interface through the detection cell. This peak may be super­

imposed on a baseline shift. If the second eluent is directed 

into the column, it may be in order to strip a sample compo­

nent. If this is the case, the solvent change peak may exactly 

coincide with a sample component peak and make the analysis 

complicated or impossible. This problem is not encountered 

using the CMP-2 pump because the pump volume produces suffi­

cient mixing to eliminate any solvent interface. 

Color Reagents 

In-stream addition of a color-forming reagent to permit 

photometric detection of sample components has been used for a 

number of years in automatic analyzers. However, these instru­

ments employ mixing procedures which cannot be used in forced 

flow chromatography because of the large amount of band spread­

ing and loss of resolution which they produce. 

Sickafoose (68) first attacked the problem of efficient 

mixing in very short times and small volumes. The in-stream 

colorimetric detection of sample components by reagent addi­

tion done in this work is essentially based on that of Sicka­

foose. The whirlpool, divided tangential entry mixing chamber 

is the same. 

It was considered desirable that the colorimetric reagents 
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chosen react quickly, and that their formation constant be 

high. They should form a complex of high molar absorptivity 

and the free indicator should have a low absorptivity at the 

wavelength of the maximum absorbance of the complex. The com-

plexing reaction should take place in solutions in which close 

pH control is not necessary, so as to eliminate the need for 

the presence of large amounts of buffer or close control of 

reagent flow rate. 

The colorimetric reagents chosen were 4-(2-pyridylazo)-

resorcinol (PAR), and Arsenazo III, whose selection was based 

on the studies of Sickafoose, and Arsenazo I, which has been 

found to give a colored species with calcium, magnesium and 

several ions (71-73). Figure 16 shows the structure of these 

reagents. 

In addition to those colorimetric reagents just listed, 

Chlorophosphonazo III was also examined for suitability, 

especially in the detection of the alkaline earths and alumi­

num. Both the data of Sickafoose and others, and laboratory 

spot tests indicated that this reagent might give more satis­

factory detection for these metals than Arsenazo III. This 

was not found to be the case. Although Chlorophosphonazo III 

was found to give a color-forming reaction at lower pH with 

aluminum, barium, strontium, and calcium than Arsenazo III, 

its overall sensitivity was less. 

Each of the three color reagent solutions were prepared 

differently because of the general types of ions each was 
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expected to detect. The PAR solution was prepared by placing 

0.25 g of Eastman 7714 PAR in a 2-liter volumetric flask and 

adding about 1 liter of water. 670 ml of B§A (28-30% NH^) 

Reagent ACS concentrated NH^OH was then added to the flask. 

The solution was then stirred with a magnetic stirrer until 

all solids had dissolved, and the solution was diluted to 

volume. The NH^ served to neutralize the effluent acid solu­

tions and provide a basic medium in which detection was most 

sensitive. 

Arsenazo III gave a useful color change for several ions 

only in a narrow pH range. It was thus necessary to add an 

appropriate buffer to the solution in addition to the NH^OH 

present to neutralize the acid. The buffer should buffer the 

mixed solutions in the pH range in which the analysis is to 

be done. 

A simple study was done to investigate the pH at which 

some ions of interest gave a useful color change with Arsenazo 

III. The study was performed by placing a small amount of the 

particular ion in a solution of pH about 1. A few milliliters 

of Arsenazo III solution was added and titration was begun 

with dilute NaOH. pH was monitored with a Beckman Zeromatic 

pH meter and the pH at which the color change occurred was 

noted. A blank was run with no metal ion present and the 

color change due to conversion to the basic form was measured. 

The results of this study are shown in Table 13. 
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Table 13. Conditions for in-stream detection of metal ions 
using Arsenazo III 

Metal Effluent pH range for 
maximum sensitivity 

Thorium, Zirconium <1 

Aluminum, the Lanthanides, 2-3 
and Chromium 

Calcium, Copper, Strontium, 3.5-4.5 
and Lead 

Barium 5.5-6.5 

Maximum pH for useful analysis - 6.5 

Since the results indicate that the solutions should be 

buffered in the pH 3-6. range, ammonium acetate was chosen. 

It does not interfere with the analysis. 

The Arsenazo III solution was prepared by placing .075 g 

of Aldrich A-9277-5 Arsenazo III in a 2 liter flask and adding 

about 1 liter of water as in the preparation of the PAR solu­

tions. 154 g of Baker Analyzed Reagent NH^OOCCH^ and 270 ml 

of concentrated NH^OH were added to the Arsenazo III and the 

solution stirred until all solids had dissolved. The solution 

was then diluted to a volume of 2 liters. 

Arsenazo I was used only for the determination of calcium 

and magnesium. This analysis was done in basic medium. 0.18 

g of Aldrich 10,798-0 Arsenazo I was combined with 402 ml of 

concentrated NH^OH and the solution made up to 2 liters with 

water and stirring, as before. 
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Table 14 lists the three colorimetric reagents used and 

those metal ions with which color-forming reactions were shown 

to occur. Only Arsenazo III required acid solution or any 

close control of pH. The list is not comprehensive. All com­

binations of color reagent and metal ion were not tested. How­

ever, the data of Sickafoose indicates that only a few other 

color forming reactions might have occurred. 

Table 14. Observed metal-indicator reactions 

Arsenzao 
I III PAR 

Thorium (IV) 
Zirconium(IV) 
Hafnium(IV) 
Aluminum(III) 
Chromium(III) 
Lanthanides(III)' 
Bismuth(III) 
Iron(III) 
Iron(II) 
Vanadium(IV) 
Manganese(II) 
Cobalt(II) 
Nickel(II) 
Copper(II) 
Zinc(II) 
Cadmium(II) 
Mercury(II) 
Lead(II) 
Magnesium(II) 
Calcium(II) 
Barium(II) 
Strontium(II) 

X 
X X 

X 
X 

X 

X 
X 

X 
X 
X 
X 
X 
X X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
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From the table and the previous discussion it can be seen 

that PAR was by far the most versatile and convenient of the 

photometric reagents to use. It was also the most sensitive. 

These were also the findings of Sickafoose. 

Arsenazo III was relatively versatile, but insensitivity 

and the necessity for close control of pH for the analysis of 

a number of ions made this reagent somewhat less useful than 

PAR. 

Arsenazo I provided a simple and sensitive determination 

of calcium and magnesium. 

Principles 

A large volume of literature on ion exchange chromato­

graphic separations has been summarized in several books, (37, 

74,75) and the volume of literature is constantly expanding 

(52). A recent scheme for the separation and analysis of 27 

different metal ions employed selective elution from an ion 

exchange column to achieve the separation of 17 of the ions 

(76). 

Any procedure for the separation and determination of sub­

stances by forced flow chromatography should meet several cri­

teria. First, the method should, of course, be selective, 

otherwise the separation will not be achieved. The best way 

to accomplish this is to employ stepwise or selective elution. 

In this technique an eluting medium is chosen which allows 

selective retention of the sought-for-components with as many 
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other ions passing through the column as possible. The eluent 

is then changed so as to allow a desired component to elute. 

This process is repeated for each component until all desired 

components have been eluted. 

Second, the separation procedure should be rapid. Each 

component should be eluted in as short a time as possible in 

order to avoid bandspreading and loss of resolution and to 

keep the analysis time short. 

The eluting media should not react with any component of 

the color forming solution in any way that impedes detection. 

For example, the reaction should not produce a gas (bubble) or 

an insoluble salt. 

In each of the separations described in the following 

pages, preliminary work was performed to determine which par­

tially sulfonated resin gave the best resolution and shortest 

separation time. The procedures described were found to be 

the most efficient for the particular sample involved. 

Solvent changes indicated on the chromatograms are cor­

rected to compensate for the volume of liquid in the pump and 

lines up to the column entrance. This volume was measured at 

2.6 ml. 

Reagents 

The following reagents were used both in the separation 

and in measurement of equilibria of exchange. 

Hydrochloric acid was DuPont Reagent 37-38%. Solutions 
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were prepared by appropriate dilution. 

Perchloric acid was Mallincrodt Analytical Reagent 70%, 

diluted to the appropriate volume. 

Nitric acid was B§A 70-71% Reagent ACS diluted appropri­

ately. 

Ammonium hydroxide was B§A 28-30% (NH^), diluted appropri­

ately. 

Ammonium acetate was Baker Analyzed Reagent CH^COONH^ 

98.4%, formula weight 77.08. 

Citric acid was Baker Analyzed Reagent Monohydrate 

HOC(COOH)(CH2COOH)2H2O 99.9%, used as received. 

Lactic acid was obtained from Baker and used as received. 

Acetonitrile was Baker Analyzed Reagent 99.8%, used as 

received. 

The sample metal solutions were prepared by dilution of. 

the stock metal solutions whose preparation is described on 

page 

2-Hydroxyisobutyric acid was obtained from Aldrich Chem­

ical Co. as Catalog number 16,497-6, 98+%. 41.6 g of the 

solid crystals were weighed and placed into a one liter beaker 

along with a magnetic stirring bar. The solution was stirred 

until the soluble solids appeared to have dissolved and the 

solution was then filtered into a 1 liter volumetric flask 

and diluted to volume. 

Ethylenediamine was Fisher Certified Reagent Anhydrous, 

formula weight 60.102. 
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Separations in acetonitrile-aqueous hydrochloric acid 

Kawazu and Fritz (35) and Fritz and Rettig (77) have 

described cation exchange separations of several metal ions in 

mixed acetone-water-HCl media and in isopropyl alcohol-aqueous 

HCl solutions. An attempt to duplicate their results in ace­

tone-aqueous HCl failed because of the extreme volatility of 

acetone. 

Acetonitrile, however, has a higher boiling point than 

acetone, is inexpensive, and a good ligand (78). 

Acetonitrile solutions were used to separate each of five 

very common divalent metal ions on the 1.89 meq/g resin as 

shown in Figure 17. The column was equilibrated at a flow 

rate of 2 ml/min with 50% acetonitrile-0.5 M HCl and the sam­

ple was injected in this medium via the sample injection valve. 

Zinc elutes easily in the initial medium. The pump, recorder, 

and color reagent were then switched off and the inlet line of 

the pump was placed in the 70% acetonitrile-0.3 M HCl solution 

and lead was then eluted. Copper was removed with 90% aceto­

nitrile-0. 2 M HCl and manganese with 94% acetonitrile-0.5 M 

HCl. Finally nickel, which does not form chloride complexes, 

was stripped with 2 M HCl. Detection was performed with PAR 

as the color forming reagent. 

Separation of calcium and magnesium 

Calcium and magnesium are two of the most abundant ele­

ments in the earths crust. They are primary constituents of 
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hard water and as such have inspired substantial effort at the 

development of methods for the determination of each in the 

presence of the other (79). 

Two procedures were developed in this work which achieved 

the separation of calcium and magnesium by utilizing the 

greater ionic radius and hence greater distribution ratio of 

calcium. 

Figure 18 shows the separation of magnesium and calcium 

in hydrochloric acid. The sample is placed on the column 

(capacity 1.89 meq/g) and magnesium is eluted with 0.6-1.0 M 

HCl. Calcium is then removed with 4 M HCl. The entire sepa­

ration can be accomplished at a flow rate of 1 ml/min in 7 

minutes or in about 4 minutes at 2 ml/min. The figure shows 

the magnesium peak to be broader than the calcium peak because 

the magnesium is not initially sorbed in as tight a band as is 

calcium. 

Figure 19 shows a very similar separation of calcium and 

magnesium. In this figure the sample is injected into 1 M HCl 

as before, and magnesium is eluted. The eluent is then 

changed to 0.5 M ethylenediamine-1 M HCIO^ and calcium is re­

moved in this solution. The purpose of the perchloric acid in 

the second eluent is to prevent a large baseline shift upon 

switching to the complexing eluent. 

Separation of lead 

Lead is strongly retained on the partially sulfonated 

resins in perchloric acid media, while most other common 
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divalent ions are not. This fact permits an easy separation 

of lead from many other metal ions. 

Methods for the.determination of lead usually employ a 

separation of some kind, usually an extraction (80). A di-

thizone extraction and colorimetric determination of lead in 

the organic phase is widely used. But extraction procedures 

often require extensive purification of reagents and thus much 

laboratory time. 

A forced flow chromatographic method for lead on an anion 

exchanger has been reported (32). However, there are many 

common metal ions which could sorb to the resin under the con­

ditions employed and cause column overloading (81). 

In the chromatogram shown in Figure 20, lead is separated 

from a much larger amount of four divalent ions. In this 

method the sample is injected into the column in 1-2 M HCIO^. 

Vanadium(IV), iron(II), iron(III), copper(II), zinc(II), 

nickel(II), manganese(II), aluminum(III), magnesium(II), and 

calcium(II) pass through the column unretained. Lead is then 

eluted with 1-2 M HCl. 

Separation of zirconium and thorium 

Zirconium and thorium are two elements which exist most 

commonly in the quadrivalent state and are among those most 

strongly taken up sulfonic acid cation exchangers. Strelow 

(82) found that zirconium and thorium could be separated on 

Dowex 50 by eluting zirconium with 5 M HCl while thorium is 

retained. Thorium could then be eluted in oxalic or sulfuric 
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acid (83). A number of other cation exchange methods have 

been reported (84,85). 

Figure 21 shows a separation of 25.6 yg of zirconium from 

13.1 yg of thorium. The separation was done on the relatively 

low capacity resin 0.84 meq/g. The sample was injected into 

the 0.1 M ammonium citrate solution at a flow rate of 2 ml/min 

and zirconium was eluted almost immediately. After' the zircon­

ium had eluted the eluent was changed to 4 M HCl and thorium 

eluted from the column. 

Separation of lanthanum and thorium 

Lanthanum is the member of the lanthanide series which is 

generally the most difficult to remove from sulfonic acid type 

cation exchangers. Thorium is perhaps the most difficult 

metal ion to remove in the periodic chart in inorganic acid 

media. 

The separation of lanthanum and thorium is also important 

because the mineral monazite is the primary natural source of 

both metals. A gravity flow cation exchange method for the 

separation of thorium from monazite concentrates has been re­

ported (86), however this procedure is somewhat complicated. 

The separation shown in Figure 22 uses only two different 

concentrations of one eluent to obtain a complete separation 

on an analytical scale in about four minutes. 

The column chosen for the separation was of capacity 0.84 

meq/g. The sample solution was injected into a flowing eluent 

stream of 1 M HCl. The greater part of the actual separation 
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Fig. 21. Separation of zirconium(IV) and thorium(IV) 
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takes place during the time that the first solvent is passing 

through the column. At a measured time, just before the lan­

thanum peak is to elute, the eluent is switched to 4 M HCl. 

Lanthanum then immediately elutes and thorium follows. The 

same procedure can be used for the separation of any or all of 

the lanthanides from thorium. However, if more than one lan-

thanide ion is eluted, the resolution will permit only thorium 

to be quantified. 

Separation of the lanthanide rare earths 

For many years the only method for the separation of the 

rare earths was fractional crystallization or precipitation. 

These methods often required as many as 5000 recrystalliza-

tions involving several years for complete separation. The 

development of ion exchange chromatography has vastly simpli­

fied this problem. 

Although the chemical properties of the lanthanides are 

almost identical, an ion exchange separation can utilize the 

very slight decrease in ionic radius from lanthanum to lute- . 

tium to obtain a separation. This separation can be enhanced 

by the use of a complexing eluent at an appropriate pH. The 

complexing agents complex lutetium most strongly and the for­

mation constants decrease smoothly to those of lanthanum. 

Thus the slight-ly increasing acidity of the heavier lantha­

nides relative to the lighter ones can be used to obtain a 

separation. 

Citrate, lactate, ethylenediaminetetracetate, and 2-



www.manaraa.com

105 

hydroxyisobutyrate have been found to be the most useful in 

effecting rare earth separations (74). All were tried in this 

work. 

The potentialities of ion exchange chromatography were 

perhaps made most obvious in 1947 when Spedding, Powell, e;t al. 

performed the first successful separation of the rare earths 

and subsequent preparative scale separations (87-90). The ini­

tial work by these workers was done using citrate solutions. 

However, better eluents have been found since that initial 

work. 

Lactate solutions have also found wide use in the separa­

tion of the lanthanides (74). Analytical scale separations of 

some of the rare earths are better in.lactate solutions than 

in citrate. However, some problems have been reported in re­

producing elution volumes with lactate eluents apparently be­

cause lactic acid solutions contain varying amounts of dimers. 

It is also often necessary to employ heated columns when using 

lactate in order to facilitate the separation. 

Ethylenediaminetetracetate (EDTA) as well as other poly-

acetic acids have been shown to give very good rare-earth 

separations (91-93). But if the pH is too high the separation 

requires a very long time and if it is too low, EDTA precipi­

tates. In this work EDTA could not be used because the metal-

EDTA complexes are so much stronger than the complexes formed 

by the metallochromic indicator, that the eluted metal is not 

detected. 
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2-Hydroxyisobutyrate (HIBA) is one of the best complexing 

agents developed for the ion exchange separation of the rare 

earths (53,94,95). It gives better separation factors than 

lactic or citric acid and can be used with faster flow rates 

than EDTA (95). HIBA does not require high temperatures to 

achieve maximum separation factors. 

A pressurized ion exchange separation of the lanthanides 

has been reported by Campbell (53) . The separation was done 

in HIBA on a column 1 ft x 9 mm using 25-60 micron particles 

at 500 psi. The separation required only 2 hours. However, 

detection and construction of the chromatographic curve was 

performed by collecting fractions and radiochemical analysis. 

The entire process required about a week. 

Figure 23 shows a separation of 13 lanthanide rare earths 

on Dowex 50x8 in about 4 hours. The eluent employed in this 

separation was a pH gradient (2.9 to 4.5) of 0.4 M HIBA. The 

separation was performed on 44-63 micron particles in a column 

93.5 cm X 2.8 mm. Cerixim is not included in the separation 

because it is easily extracted in the Ce(IV) state. Prometh-

ium is also not included since it is not naturally occurring. 

The sample, containing about 5 yg of each of the 13 lantha­

nides was injected onto the column in HIBA of pH approximately 

2.9. The pH of the eluent was then raised slowly by means of 

the apparatus shown in Figure 24. 

Two beakers were placed on a level surface and equivalent 

amounts (75 ml) of HIBA were added to each. The connecting 
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tube was filled and a stirring bar placed in beaker B. The pH 

of beakers A and B was adjusted to 4.5 and 2.9 respectively 

and the pump inlet was placed in beaker B and elutions begun. 

The sample was then injected. As the liquid level in B was 

lowered, the solution of higher pH [beaker A) passed into B, 

raising the pH of the eluent solution. 

After injection the entire separation could be left un­

attended until all ions had eluted. The order of elution is 

the same as that usually observed. Resolution on the first 

and last pairs of ions is barely complete. 

The tailing observed with the last few ions was found to 

be even more pronounced on the partially sulfonated resins 

used for all other separations. However, the partially sulfon­

ated resin of capacity 0.84 meq/g gave a better separation for 

the first seven elements than Dowex 50. 

The detection could easily be used to give quantitative 

results if desired. 

Analyses 

Analyses were performed on two NBS standard samples in 

order to give some indication of the versatility of the sepa­

rations developed. 

Analysis of NBS 37d 

2-3 g of NBS Standard Sample 37d sheet brass was washed 

in acetone, dried, and about 0.5 g was weighed accurately into 

each of three 250 ml beakers. About 10 ml of concentrated 
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HNOg was added and the mixtures were heated until the original 

solids had dissolved. The solutions were filtered through 

Schleicher and Schnell red ribbon filter paper to remove pre­

cipitated tin and the filtrates were collected in a 100 ml 

volumetric flask. The solutions were then diluted to volume 

with water. 

A 56.3 pi sample from each of the sample solutions was 

injected directly onto the 1.89 meq/g column in 2 M HCIO^. 

The matrix, consisting of copper, zinc, and nickel was unre-

tained and passed directly through the column as shown in 

Figure 25. The eluent was then switched to 2 M HCl and lead 

eluted. 

Peak height and peak area were measured for each of the 

three sample solutions and compared with calibration curves. 

The calibration curves, shown in Figures 26 and 27, were pre­

pared from measured peak heights and areas obtained from 

chromatograms of lead injections in 2 M HCl. The lead stock 

solution was standardized by titration with standard EDTA 

solution. 

Results of this and other analyses are listed on Table 

15. Relative standard deviations are given for triplicate 

analyses of each solution. It was found that peak area gave 

a much better quantitative measure of the amount of sample com­

ponent present than peak height. This was apparently due to 

the greater band spreading in the sample chromatograms and 

hence lower peak heights than in the chromatograms used for 
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Table 15. Results of NBS analyses 

Sample Metal ion Our analysis NBS analysis Relative 
standard 
deviation 

37d 

124d 

124d 

124d 

Pb 

Pb 

Zn 

Ni 

0.96% 

5.16 

5.10 

0.97 

0.94% 

5.20 

5.06 

0.99 

1.7 pph 

0.3 

1 . 6  

1 . 8  

the preparation of the calibration curves. 

Analysis of NBS 124d 

Three solutions of NBS Standard Sample 124d ounce metal 

were prepared by dissolution in HNO^ and filtration as for 

37d. Five ml aliquots of the stock sample solution were then 

diluted to 25 ml and these solutions were analyzed for lead 

content by the same procedure as that used for 37d and pre­

viously described. The same calibration curves were used to 

obtain the quantity of lead present. The results are listed 

on Table 15. 

Zinc NBS 124d was analyzed for zinc by the aceto-

nitrile-HCl separation method previously described. 56.3-vil 

portions of the 5:1 dilutions of stock sample solutions were 

injected into 50% acetonitrile-0.5 M HCl and zinc was eluted 

immediately. All other components were retained. This separ­

ation is shown in Figure 28. 

Stock zinc solution, used for the preparation of the 
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calibration curve, was prepared by dissolving Baker Analyzed 

Reagent zinc metal (99.9%) in HCl and diluting to volume. The 

calibration curves shown in Figures 29 and 30 were obtained 

from triplicate injections of dilutions of the stock solution 

in 50% acetonitrile-0.5 M HCl. Peak height or area can be 

used in this case but peak area gives better accuracy (0.8% 

error as compared to 2.2%) and precision (1.6 pph compared to 

2.7 pph)• 

Nickel NBS 124d was also analyzed for nickel content 

by the acetonitrile-HCl procedure. 56.3 ul of the original, 

undiluted sample solutions were placed on the column in an 

eluent of 90% acetonitrile-0.2 M HCl, and zinc, lead, and 

copper were eluted. Nickel was retained from this medium and 

was then stripped with.2 M HCl (aqueous). 

A calibration curve was prepared using dilutions of a 

stock nickel solution standardized by EDTA titration. The 

standard solutions were sorted in 90% CH2CN-O.2 M HCl and 

eluted in 2 M HCl. The amount of nickel in the sample was 

then determined by comparison of peak areas. The calibration 

plot is shown on Figure 31. 
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CONCLUSION 

Partially sulfonated, macroreticular, cation exchange 

resins are very simple to prepare. They are chemically stable 

and do not degrade easily. Their mechanical strength makes 

them well suited to forced flow chromatography. 

Distribution ratios measured on the low capacity resins 

indicate that there are a large number of metal ions that can 

be separated easily on such resins. The separation factor for 

two multivalent metal ions usually increases with increasing 

capacity. But this is not always the case, as is demonstrated 

by the plots of distribution ratio versus capacity shown on 

Figures 11 and 12. Distribution ratios measured on the resins 

do increase continuously as capacity is increased. The rate 

of increase for a metal ion can be estimated from its crystal 

radius and ionic charge with distribution ratios increasing 

faster for those ions having large ionic radius and large 

ionic charge. 

Selectivity coefficients for metal ion-hydrogen ion ex­

change are also shown to increase with increasing capacity 

when the anionic charge density on the pore walls becomes 

great enough to allow more than one anionic site to interact 

closely with a metal ion. 

Partially sulfonated resins provide adequate resolution 

and fast exchange of ions in the separation of many strongly-

held metal ions in dilute acid media. Separations of zircon­
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ium and thorium, and lanthanum and thorium can be accomplished 

in a few minutes. In addition, many more common ions can be 

easily separated on these resins. Calcium and magnesium can 

be separated and determined in various samples. Lead can be 

selectively sorbed in HCIO^ and separated from most other metal 

ions. Zinc, lead, copper, manganese, and nickel can be separ­

ated on aqueous-organic HCl solutions. Other separations 

could certainly be accomplished. 

The low capacity resin of 0.84 meq/g gives better resolu­

tion of the lighter lanthanide ions than does Dowex 50x8 of 

the same particle size. 

Forced flow chromatography and in-stream effluent detec­

tion can be applied to lanthanide separations. The entire 

group can be separated and quantitated in about 4 hours. 

PAR provides a sensitive and versatile reagent for in-

stream detection of metal ions in forced-flow chromatography. 

Components can be quantitated. using peak area on the chromato-

gram, or, in some cases, peak height. 
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